Robots Among Us: The Future of Team Performance

Julie Shah, PhD
Associate Professor, Aeronautics and Astronautics
Director, Interactive Robotics Group
Massachusetts Institute of Technology
Vision

Harness the strengths of humans and robots to accomplish what neither can do alone.
Coexistence but *not* Collaboration.
Teamwork is possible because people

- effectively infer
- anticipate
- adjust
Realizing a robot teammate requires the following sequential system capabilities:

1. A system to participate in human team planning to infer the agreed upon idealized shared plan.

2. A system to refine the plan for real contexts through observation and interaction.

3. An online system to rapidly predict the details of future human actions and react accordingly.
Realizing a robot teammate requires the following sequential system capabilities:

1. A system to participate in human team planning to infer the agreed upon idealized shared plan.

2. A system to refine the plan for real contexts through observation and interaction.

3. An online system to rapidly predict the details of future human actions and react accordingly.
Method:

Coordinate systems are assigned to the arm kinematics

Results:

- More efficient collaboration through time-series classification of human’s next action using motion features.
- Accurate prediction with 400msec of human motion.
Multiple Predictor System

\(D_{\text{Train}} \)

Predictor 1
Predictor 2
\ldots
Predictor n

Predictor Training

\(\pi^1 \)
\(\pi^2 \)
\ldots
\(\pi^n \)

Learned Parameters

\(D_{\text{Model Selection}} \)

Predictor 1
Predictor 2
\ldots
Predictor n

Predictor Fusion

\(w^1 \)
\(w^2 \)
\ldots
\(w^n \)

Predictor Weights

Multiple-Predictor System
With Vaibhav Unhelkar, Pem Lasota, Quirin Tyroller, Rares-Darius Buhai, Laurie Marceau, and Barbara Deml – in collaboration with BMW
DANGER

NO ENTRY

AUTHORISED PERSONS ONLY

ROBOT OPERATING AREA

DO NOT ENTER

AUTHORISED PERSONS ONLY