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‘ An Architect’s View of the World
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‘ Goal

Develop co-designed algorithms, SW, and HW to
close the gap between algorithms and devices by
100-1000X, accelerating QC by 10-20 years.
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‘ Microarchitecture
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‘ Breaking ISA Abstraction
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s Multi-Qubit Operators for QAOA

o Direct translation from compiler to control pulses
[Joint work with David Schuster]

6



‘ Modularity

: : N x N optical :
N trapped ion quantum registers CrCSsconnaeaitich N/2 beam splitters

CCD Camera

C. Monroe et al. Phys. Rev. A 89, 022317 (2014)




Modular Chicago QC Hardware architecture (Schuster)
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Each memory mode an hold a qudit with up to 10 states

Advantages:
* 10 qubits per module, made in the machine shop, not the cleanroom

 10x fewer transmons, 10x less classical hardware



‘ IL.ocal vs Non-I.ocal Communication

s Maybe 10X bandwidth difference?
s Not that unusual in the classical world

m How does this affect quantum algorithms?
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‘ Static vs Dynamic: Mapping Data

Static spectral and graph
partitioners

Map for clustering

o Probably necessary to get to 1000
qubits

Map for irregular physical
constraints
o Qubit couplings, hardware defects

Granularity of mappings
Interaction with qubit reuse

Spectral communities for 2-level
Bravyi-Haah magic-state factory
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‘ Static vs Dynamic: Compilation

= Many applications static

= But quantum-classical co-processing may
require dynamic parameters

= How to get a high level of optimization
without complete re-compilation?

o Eg hours for optimal control pulse generation, but
how to adapt to changing rotation angles?

o Similar to partial compilation for FPGAs
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‘ Multiple Tech vs Comm Overhead

m Classical architectures composed of multiple
technologies: logic, SRAM, DRAM,
interconnect

= With optical transduction, we can have:
o lons for high connectivity
o Superconductors for high speed
a Neutral atoms for storage
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‘ N-ary Logic vs Errors

= Use more than 2 qubit
states per device

m Good for swap gates

= But higher modes have
higher error probability

superconducting circuit energy levels:

A . ;
\ parabolic energy
\ \landscape
\

e
T 4 —f |3
\ /2

d

)

v

superconducting phase ©

[image credit: qutech blog]

10:06

13



‘ Classical Control and Computation

s [emperature boundaries and interconnect
constraints [Tannu+ Micro17]

o Cryo-cmos: high power, but lower cost to cool 4k

o Superconducting: expensive memory, low power,
but expensive to cool to 10mk

s Real-time control: hard for GHz speeds
o Adaptive algorithms, ML

= Error decoding

a Fast, simple decoder in superconducting logic
s Trade frequency of decoding for quality
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‘ Specialization vs Abstraction
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