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Develop co-designed algorithms, SW, and HW to 
close the gap between algorithms and devices by 
100-1000X, accelerating QC by 10-20 years. 
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Microarchitecture 
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[Fu+ Micro 2017 Best Paper]  



Breaking ISA Abstraction 

n  Multi-Qubit Operators for QAOA  
q  Direct translation from compiler to control pulses 
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[Joint work with David Schuster] 



Modularity  

C. Monroe et al. Phys. Rev. A 89, 022317 (2014) 



Modular Chicago QC Hardware architecture (Schuster) 

Advantages: 
•  10 qubits per module, made in the machine shop, not the cleanroom 
•  10x fewer transmons, 10x less classical hardware 

Each memory mode an hold a qudit with up to 10 states  
 



Local vs Non-Local Communication 

n  Maybe 10X bandwidth difference? 
n  Not that unusual in the classical world 
n  How does this affect quantum algorithms? 
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Static vs Dynamic: Mapping Data 
n  Static spectral and graph 

partitioners 
n  Map for clustering 

q  Probably necessary to get to 1000 
qubits 

n  Map for irregular physical 
constraints 
q  Qubit couplings, hardware defects 

n  Granularity of mappings 
n  Interaction with qubit reuse 
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Spectral communities for 2-level 
Bravyi-Haah magic-state factory 



Static vs Dynamic: Compilation 

n  Many applications static 
n  But quantum-classical co-processing may 

require dynamic parameters 
n  How to get a high level of optimization 

without complete re-compilation? 
q  Eg hours for optimal control pulse generation, but 

how to adapt to changing rotation angles? 
q  Similar to partial compilation for FPGAs 
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Multiple Tech vs Comm Overhead 

n  Classical architectures composed of multiple 
technologies: logic, SRAM, DRAM, 
interconnect 

n  With optical transduction, we can have: 
q  Ions for high connectivity 
q  Superconductors for high speed 
q  Neutral atoms for storage 
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N-ary Logic vs Errors 

n  Use more than 2 qubit 
states per device 

n  Good for swap gates 
n  But higher modes have 

higher error probability 
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[image credit: qutech blog] 



Classical Control and Computation 

n  Temperature boundaries and interconnect 
constraints [Tannu+ Micro17] 
q  Cryo-cmos:  high power, but lower cost to cool 4k 
q  Superconducting:  expensive memory, low power, 

but expensive to cool to 10mk 
n  Real-time control: hard for GHz speeds 

q  Adaptive algorithms, ML 
n  Error decoding  

q  Fast, simple decoder in superconducting logic 
n  Trade frequency of decoding for quality 
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Specialization vs Abstraction 
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