
 Quantum Computer Architecture
(Co-Designed with Software):

Tradeoffs and Breaking Abstractions

Fred Chong
Seymour Goodman Professor
Department of Computer Science
University of Chicago

Lead PI, the EPiQC Project,
 an NSF Expedition in Computing

With Margaret Martonosi, Ken Brown, Peter Shor, Eddie Farhi, Aram
Harrow, Diana Franklin, David Schuster, John Reppy, and Danielle
Harlow (UChicago, MIT, Princeton, Duke, UCSB)

An Architects View of the World

2

Modeling

Architecture

Compiler

Prog Lang

Algorithms

Devices

An Architect’s View of the World

3

Modeling

Architecture

Compiler

Prog Lang

Algorithms

Devices

Architecture

Goal

Modeling

Architecture

Compiler

Prog Lang

Algorithms

Devices

Develop co-designed algorithms, SW, and HW to
close the gap between algorithms and devices by
100-1000X, accelerating QC by 10-20 years.

C
o-D

esign

Effective # gates

qu

bi
ts

(fu

lly
-c

on
ne

ct
ed

)

Microarchitecture

5

[Fu+ Micro 2017 Best Paper]

Breaking ISA Abstraction

n  Multi-Qubit Operators for QAOA
q  Direct translation from compiler to control pulses

6

[Joint work with David Schuster]

Modularity

C. Monroe et al. Phys. Rev. A 89, 022317 (2014)

Modular Chicago QC Hardware architecture (Schuster)

Advantages:
•  10 qubits per module, made in the machine shop, not the cleanroom
•  10x fewer transmons, 10x less classical hardware

Each memory mode an hold a qudit with up to 10 states

Local vs Non-Local Communication

n  Maybe 10X bandwidth difference?
n  Not that unusual in the classical world
n  How does this affect quantum algorithms?

9 10:06

Static vs Dynamic: Mapping Data
n  Static spectral and graph

partitioners
n  Map for clustering

q  Probably necessary to get to 1000
qubits

n  Map for irregular physical
constraints
q  Qubit couplings, hardware defects

n  Granularity of mappings
n  Interaction with qubit reuse

10

Spectral communities for 2-level
Bravyi-Haah magic-state factory

Static vs Dynamic: Compilation

n  Many applications static
n  But quantum-classical co-processing may

require dynamic parameters
n  How to get a high level of optimization

without complete re-compilation?
q  Eg hours for optimal control pulse generation, but

how to adapt to changing rotation angles?
q  Similar to partial compilation for FPGAs

11

Multiple Tech vs Comm Overhead

n  Classical architectures composed of multiple
technologies: logic, SRAM, DRAM,
interconnect

n  With optical transduction, we can have:
q  Ions for high connectivity
q  Superconductors for high speed
q  Neutral atoms for storage

12 10:06

N-ary Logic vs Errors

n  Use more than 2 qubit
states per device

n  Good for swap gates
n  But higher modes have

higher error probability

13 10:06

[image credit: qutech blog]

Classical Control and Computation

n  Temperature boundaries and interconnect
constraints [Tannu+ Micro17]
q  Cryo-cmos: high power, but lower cost to cool 4k
q  Superconducting: expensive memory, low power,

but expensive to cool to 10mk
n  Real-time control: hard for GHz speeds

q  Adaptive algorithms, ML
n  Error decoding

q  Fast, simple decoder in superconducting logic
n  Trade frequency of decoding for quality

14

Specialization vs Abstraction

10:06 15

Short-term SW Long-term SW

100 1000 10000 100000

qubits

Gap?

