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Imaging in Virtual Reality

Virtual Reality
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Computational Refocusing

Source: wikib=oedia and Tecnolgy Review
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Light field cameras

Lytro Immerge Camera Google’s Light field Camera

Source: wikipedia and Technology Review
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Detectors: the “sensory system” for science

Resolution . T _ Resolution
before 2013 e e at present

Berkeley Lab advances detector technology for many fields of science, including (above
CryoEM) biology, cosmology, material science, physics, and more.
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Data Rates from the Latest Detectors

100,000 fps STEM detector for Electron Microscopy
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Cryo-EM Computational Issues

 Many 2D projections of the 3D

% object need to be aligned to create a
f’%&% 3D reconstruction
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Current best practice is the use of Bayesian
methods (RELION) and a single high resolution
reconstruction will use 100-200 thousand
particles and ~two weeks of 200-300 cores

running in parallel

(- : between s 20 memory (32-64GB per core)
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Imaging in Science

Grapevine hydraulics

Coral exoskeleton
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Imaging essential to EUV lithography

CXRO beamline at ALS/LBNL

From synchrotron Scanner
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Roughness in masks is one of the major
challenges in EUV lithography

Aamond Shankar, Patrick Naulleau, Laura Waller
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Wearable MRI sensors + HPC Analytics

Many Types of MIR Scans

Cartesian Spiral 2D Radial

Stochastic 3D Radial

Wearable MIR sensors [Arias UCB]
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Goals: ' .,':.,‘::‘-? e
1) reduce time in MRI

2) improve patient experience Compressed sensing algorithms [Lustig, UCB]
3) better quality of images
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Parallel MRI and Undersampling

* Use multiple receive coils to acquire signal.
 Subsample Fourier space by factor (2,4,8, etc) = reduces scan time linearly
* Incur aliasing, but use coils’ spatial sensitivity to resolve it.

0
50

100

150 200 250

Sensitivity v

150
200

250
200 250 0 50

A = U.S. DEPARTMENT OF Ofﬁce of
cecoeenl 'ENERGY science

BERKELEY LAB



Real-Time Analytics in Health

HEE Input Tree ||
B +Reorder
I +Realize
B +Transpose
B +Ex-Write

100 s

10s

Iteration Time (s)

100 ms

Numpy-CPU  MKL-CPU Custom-CPU MKL-KNL Custom-KNL Cuda-GPU Custom-GPU

3 min goal (1 sec/iteration)
Michael Driscoll HPC optimization

Compressed Sensing Approach by Mike Lustig et al
MRI results Wenwen Jiang
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Algorithms / Motifs



Math Challenges in Energy Science Data @Y

James Sethian, Pl JCAP
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BES Functional Electronic Materials
BES Nanoporous Materials

EFRC Gas Separation
CLS (Canada)
NSLS-2
Molecular Foundry
ALS

Probabilistic Graphical Models

Model-based reconstruction , ‘

\/. SSRL
Iterative Phasing ‘ V‘ LCLS
“'A\ DIAMOND (UK)
Spectral analysis % ESRF (Grenoble)
PETRA lll (Germany)
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\ B\ SIESTA, CP2K, Image), Fiji

(Bosch, Samsung, Intel,GE,...)

iversities: e.g.: Berkele Northwestern, Georgia Tech, Rice, UCSD,
C, McMaster, Austin, Stanford,..

New mathematical modeling

Discrete mathematlcs{
Computational geometry z/
Linear Algebra (Selected inversion,

fast pseudoinverse approximation,..
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Analytics vs. Simulation Kernels: Redo?

7 Giants of Data 7 Dwarfs of Simulation
Basic statistics Monte Carlo methods
Generalized N-Body Particle methods
Graph-theory Unstructured meshes
Linear algebra Dense Linear Algebra
Optimizations ‘|: Sparse Linear Algebra
Integrations Spectral methods
Alignment Structured Meshes

Sorting/Search and Hashing?
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Algorithms / Motifs

CNNs
ADMM: Alternating Direction Method of Multipliers

— Inner loop is linear algebra
Optimization methods in general
Ray Tracing
Image processing algorithms

— Convolutions

— Dense linear algebra
— Sparse (structured) linear algebra

Image/signal sampling and resampling

FFTs

So%% U.S. D

Office of

\Gj

.S. DEPARTMENT OF
/ENERGY

Science

Exascale Science



Hardware / Programming



Most commonly used hardware

* GPUs: CAMERA, etc.
 FGPAs: LCLS/SLAC,
 ASICS: Darkroom

* (Although surely many CPUs as well)
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Programming Approaches

* Matlab = python - Halide or cloud/clusters
* Libraries

 Stencils only (Darkroom)
* Loops / Compilers (Chill)
* Loops / DSLs (Halide)

* Matrices / DSLs (Indigo)
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Hardware (input from SLAC)

* FPGAs in the data reduction pipeline (DRP)
— for the analyses that do not change significantly across different
experiments.
* In general, the DRP will perform one of the following:

— Feature extraction (eg determine the list of peaks from a
diffraction image; beam center determination and radial
integration; time of flight determination by measuring the peaks
in a digitizer waveform; etc)

— Compression (lossy and lossless)

— Vetoing (drop events which are not hits, ie the xray pulse didn't
illuminate the sample - useful for experiments which use an
injector)

— Histogramming (assign events to specific bins in a predefined
phase space)
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