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Broad Scope 

•  Application Domains 
– Omics: Genomics, Transcriptomics, Metagenomics, 

Microbiomics, systems Biology, Metabolomics, Proteomics  
– Digital diagnosis, Drug-receptor interactions, Medical 

imaging, Edge computing, Life in simulation 

•  Middleware 
– Optimized libraries, New language? 

•  Architecture 
– Processor, accelerator 
– Compute in memory 
– Memory, Storage (SSD, NVM), Network Interconnect, 

Cloud 

•  Security, Privacy 
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Next Generation Sequencing – The Big 
Data Challenge 

ABI 3700 

96 ~800 bp 
reads 

76.8 X 103 
bases 

~$1 per kilo 
base 

Illumina NovaSeq 
6000 

20 billion 2X150-bp 
paired reads 

3000 X 109 bases 

~$1 per 100 million 
bases 

Then 
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No
w 
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Stephens, et. al. Big Data: Astronomical or Genomical?. 
PLOS Biology. (2015) 

Genomics, Metagenomics, Microbiomics, 
Transcriptomics = Next Generation 

Sequencing 
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Dozens of Tools But Computation 
Limited to a Few Building Blocks 

Identification of Significant Computational Building Blocks through 
Comprehensive Deep Dive of NGS Secondary Analysis Methods. 
Md Vasimuddin, Sanchit Misra, Srinivas Aluru. bioRxiv 301903 

Building Blocks 

Applicatio
ns 

Tools Smith 
Waterma
n 

FM-
inde
x 

Kmer 
counting and 
indexing 

Hidden Markov 
Model 

Sorti
ng 

Machine 
(Deep) 
Learning 

Traditional 
Genomics 

Sequence 
Alignment 

Exact sequence 
alignment 

100% 

HMMER 100% 

BLASTN, BLAT 

NGS 
Secondary 
Analysis 
 

Sequence 
Mapping 

BWA -MEM, Bowtie/
Bowtie2 

20-50% 40-8
0% 

SOAP2 100
% 

De novo 
Assembly 

ABySS, SOAPDenovo2, 
Hipmer, etc. 

5-55% 30-90% 

SPAdes 65-90% 

Variant 
Calling 

GATK’s Haplotype Caller 20-30% 2-10% 35-60% 

Deepvariant 100% 

NGS 
Tertiary 
Analysis 

e.g. CANDLE 100% 

Sequence 
Mapping 

80.5-98.2
% 

Denovo 
Assembly 

64-99.4% 

Variant 
Calling 

72-93% 

➢ To identify the performance characteristics and architectural bottlenecks 
of the key building blocks, we performed a cross architecture comparison 
using their optimized implementations 

➢ In the process, we also identified the most efficient of the mainstream 
general purpose architectures for NGS secondary analysis 
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Smith Waterman – Many Flavors 
Basic Smith Waterman – no 
backtrack 

➢  Only need to store one row at a 
time 

➢  The row fits in cache 
➢  Parallelize (vectorize and 

multithread) across multiple 
matrices 

➢  Only challenge: variability in 
matrix sizes – sorting helps 

➢  12 operations (6 int max, 4 int 
add, 1 cmpeq, 1 blend) per cell 
update ➢  Dataset: Synthetic sequences obtained by sampling sequences of various lengths from human genome hg38 chromosome 1 

➢  SKX: Intel®  Xeon® Platinum 8180 Processor (Skylake), KNL: Intel®  Xeon Phi™ Processor 7250 (Knights Landing), P100: 
Nvidia Pascal P100 GPU 

➢  SKX uses AVX512 runs int8 implementation for length 100 and int16 for all other lengths 
➢  KNL runs int8 with AVX2 for length 100 and int32 with AVX512 for all other lengths 
➢  P100 results obtained by running Smith-Waterman benchmark from NVBIO and uses int32 operations. 

Compute 
Bound! 
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Smith Waterman – Many Flavors  
SW in HaplotypeCaller 
➢ Needs backtracking information 
➢ Unlike the basic SW where best score is 

the max of all cells, best score is the max 
of the cells of the last row and columns 

➢ Maximum score values need > 16 bits 
(~17-19 bits) 

➢ 27 operations (5 cmpgt, 7 add, 2 and, 5 
blend, 5 max, 2 or, 1 andnot) 

➢ Compute bound 
➢ We achieved 157.4 GCUPS at 84% 

efficiency compared to peak achievable. 

SW in BWA-MEM 
➢ No backtracking needed 
➢ 8-bit precision is sufficient 
➢ Only a diagonal band is computed 
➢ Size of the band changes from top to bottom 
➢ Various conditions for early exit if satisfactory 

alignment is not possible 
➢ Parallelism within one matrix is limited 
➢ Vectorization across matrices is hampered by 

irregularity 
➢ Could be compute or BW bound depending on 

data 

➢ Dataset: Real data intercepted from BWA-MEM run. 
Machine: SKX. 

➢ We have achieved only 5 GCUPS so far by 
vectorization across matrices. 

➢ Benefit of vectorization is only 10x despite vector 
width of 64. 

➢ Given the limited vectorization opportunity, this is a 
strong case for a processor that does not rely on 
vectorization for performance and power. 

Dataset: Real data intercepted from 
HaplotypeCaller run. Machine: SKX 
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FM Index Based Sequence Search – 
many Flavors 

➢ |Q| < 200, |R| is in Billions; e.g.; human genome is 3 Billions in length. 
➢ Exact search: Finding exact matches of end-to-end Q in R 
➢ Inexact search: Allow a few mismatches or insertions/deletions while still 

requiring end-to-end match 
➢ SMEM search: At each base of Q, find the matches in R for the longest 

substring of Q passing through that base that has matches in R 
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FM Index Based Sequence Search – 
Many Flavors 

Exact search 
➢ Reads two memory locations in a data 

structure of size several GBs for each 
base of the query 

➢ Performs very little compute 
➢ The computation for one base 

calculates the memory locations to be 
read for the next base 

➢ There is no locality between 
subsequent memory accesses resulting 
in a lot of data coming from memory 

➢ Due to data dependency, vectorization 
within the processing of one query is 
not possible. 

➢ Vectorization across queries is 
hampered by irregular access to 
memory 

➢ SKX and KNL implementations need extensive software prefetching, while P100 
hides memory latencies through scheduling other threads. In either case, the 
problem is bandwidth bound! 

➢ SKX performs comparable to P100, despite 1/3 the BW, due to larger caches thus 
needing lower BW. 

➢ KNL-like HBM on SKX with peak BW of 500 GB/s can increase SKX performance 
by 2x. 

➢ While for each memory access, 64B (full cache line) are read, we only need 4B. 
So, a compute in memory that can combine multiple such requests and puts only 
the required data on the bus has potential to increase throughput by up to 16x. 

➢ A processor that does not rely on vectorization for performance will do better. 
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Pairwise Hidden Markov Model 
(PairHMM) 

➢ Very similar to basic SW. 
– Also a DP based algorithm that populates a matrix for a pair of 

sequences. 
➢ Only main difference is that computation is done on FP 

numbers. 
– Only multiply and add operations are used 
– Computation is mostly SP 
– DP is rarely used. 

Dataset: Real data 
obtained by 
intercepting PairHMM 
stage in 
HaplotypeCaller run. 
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Kmer Counting 
➢ Performed using hash table as underlying data structure 
➢ Hash function computation is performed using vectorization 

•  BW bound on SKX as the amount of computation performed per byte of data read is 
lower than the compute to BW ratio of SKX 

•  Compute bound on KNL as HBM on KNL provides much higher BW 

➢ Insertion into hash table is performed using radix sort based hashing scheme 
•  The hash table is multiple GBs in size and access to it is completely irregular. 
•  There is very little compute making the problem bandwidth bound. Only 16B out of 64B 

(cache line) accessed are needed. 
•  Vectorization across multiple insertions to hash table is hampered by irregular memory 

access. 
•  Extensive software prefetching needs to be used 

➢ To the best of our knowledge, no performant stand alone implementation for 
kmer counting exists for GPGPUs 
➢ SKX performs better despite the lower memory BW due to larger caches hence 
requiring less BW. 
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Performance Characteristics of NGS 
Secondary Analysis 

➢ Irregular compute and irregular memory access to large data 
structures is quite rampant 

➢ Thus available opportunity of vectorization is very limited 
•  However, modern general purpose processors rely on vectorization to extract 

performance 
➢ Irregular memory access to large data structures requires 

extensive use of software prefetching on SKX and KNL. P100 
hides the latency by scheduling other threads 

•  For either architecture, such problems are BW bound 
•  The BW bound problem is further amplified by the fact that only a part of the 

cache line that is accessed is used 
➢ Integer operations at 8-bit, 16-bit and 32-bit level are quite 

useful 
•  max, add, cmp, and, or, xor, permute, blend, shift, etc. are particularly useful 
•  Since DNA alphabet can be represented using 2-bits, support for 2-bit level 

cmp operations will also help 
➢ FP operations are used less often 

•  PairHMM is the only kernel that uses FP operations and the operations are 
limited to only multiply and add 

•  None of the expensive numerical floating point operations like division, square 
root, etc. are used 

•  Single Precision is used in most cases. Double precision operations are used 
very rarely. PairHMM uses them in the rare scenario when single precision is 
not sufficient. 
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Model Architecture for NGS Secondary 
Analysis? 

➢ Architecture Model: 
– Data movement is a big cost (both power and time) and the 

architecture should minimize the amount of data movement and the 
associated cost 

–  The architecture should not rely on vectorization for improving 
performance or reducing power requirement 

–  The architecture should avoid requiring software prefetching as it adds 
to the cost in terms of number of instructions 

– More fine grain control of cache content would be helpful – e.g. 
scratchpad memory instead of cache 

➢ Memory 
– HBM needed! 
–  Compute in memory: that can combine data from multiple requests 

for smaller data sizes before putting them on the bus thus optimizing 
BW usage 

➢ Precision levels and Operations 
–  Integers: 

–  2-bit, 4-bit (?), 8-bit, 16-bit, 32-bit, some support for 64-bit operations. 
–  max, add, cmp, and, or, xor, permute, blend, shift. 

–  Floating point: SP multiply and add, very little support for DP multiple 
and add. 
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Micron/NIS Automata 
Processor 
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Capabilities: 
Automata	

Processor	board 

Rank	of	Automata	Processor	
chips 

Capacity 1,572,864	million	
STEs 

Compila/on	/me Automata	
dependent 

Load	/me 50	milliseconds 
Data	Processing	
bandwidth	 

1	Gbps	to	8	Gbps	
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A	database	of	known	protein	
mo/fs	

For	example,	tachykinins	are	known	to	excite	neurons	and	
contract	smooth	muscles.	Tachykinins	have	been	shown	to	
modulate	pain,	reduce	blood	pressure,	and	increase	sperm	
mo/lity.	

Substance	P	from	mammals,	birds	and	fish.	 
Neurokinin	A	from	mammals,	birds	and	fish.	 
Neurokinin	B	from	mammals	and	frogs.	 
Kassinin	from	frogs.	 
Hylamba/n	from	frogs.	 
Phyllomedusin	from	a	frog.	 
Physalaemin	from	a	frog.	 
Ranamargarin	from	a	Chinese	frog.	 
Uperolein	from	frogs.	 
Ranatachykinins	A	to	D	from	frogs.	 
Scyliorhinins	from	dogfish.	 
Carassin	from	goldfish.	 
Eledoisin	from	octopus.	 
	

Sequence	analysis	has	detected	
many	members	of	the	tachykinin	
family:	

hum
an	

African	
rhacophorid	frog 

Protein	mo/f	
Search		 

 Pro  ein 
   Au  
omata t 
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Conversion	of	a	protein	
mo/f	to	automaton	

F-[IVFY]-G-[LM]-M-
[G>]. 

1.	tachykinin	mo/f	in	
ProSite.	

<automata-network	name="tachykinin"	id="tachykinin">	
				<state-transi/on-element	id="T0"	symbol-set="F"	
start="all-input">	
								<ac/vate-on-match	element="T1"/></state-transi/on-
element>	
				<state-transi/on-element	id="T1"	symbol-set="[IVFY]">	
								<ac/vate-on-match	element="T2"/></state-transi/on-
element>	
				<state-transi/on-element	id="T2"	symbol-set="G">	
								<ac/vate-on-match	element="T3"/></state-transi/on-
element>	
				<state-transi/on-element	id="T3"	symbol-set="[LM]">	
								<ac/vate-on-match	element="T4"/></state-transi/on-
element>	
				<state-transi/on-element	id="T4"	symbol-set="M">	
								<ac/vate-on-match	element="T5"/>	
								<ac/vate-on-match	element="T6"/>	
				</state-transi/on-element>	
				<or	id="T5"><report-on-high/></or>	
				<state-transi/on-element	id="T6"	symbol-set="G">	
								<report-on-match/>	
				</state-transi/on-element>	
</automata-network>	 

2.	PROTOMATA	
converts	the	ProSite	
paeern	into	ANML.	

3.	AP	SDK	turns	
ANML	into	a	
tachykinin	
automaton.	

 Pro  ein 
   Au  
omata t 
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DVPKSDQFVGLM	

MKILVALAVFFLVSTQL
FAEEIGANDDLNYWSD
WYDSDQIKEELPEPFE
HLLQRIARRPKPQQFF
GLMGKRDADSSIEKQV
ALLKALYGHGQISHKR
HKTDSFVGLMGKR
ALNSVAYERSAMQNY
ERRR  

4.	Uncharacterized	
sequences	are	input	to	the	
tachykinin	automaton.	

5.	
Tachyki
nin	is	
iden/fie
d.	

MKILVALAVFFLVSTQL
FAEEIGANDDLNYWSD
WYDSDQIKEELPEPFE
HLLQRIARRPKPQQFF
GLMGKRDADSSIEKQ
VALLKALYGHGQISHK
RHKTDSFVGLMGKRA
LNSVAYERSAMQNYE
RRR  

DVPKSDQFVG
LM	

A
P 

Iden/fying	mo/fs	in	protein	
sequences	

 Pro  ein 
   Au  
omata t 
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ProSite database currently has 1308 motifs 

Entire database can be programmed using 
a single AP chip 

A
P 

uncharacte
rized 

protein 
sequences 

all motifs 
identified 

Scanning Entire Database 
in Parallel 

 Pro  ein 
   Au  
omata t 
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