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Broad Scope

» Application Domains

— Omics: Genomics, Transcriptomics, Metagenomics,
Microbiomics, systems Biology, Metabolomics, Proteomics

— Digital diagnosis, Drug-receptor interactions, Medical
imaging, Edge computing, Life in simulation
- Middleware
— Optimized libraries, New language?
« Architecture
— Processor, accelerator
— Compute in memory

- Memory, Storage (SSD, NVM), Network Interconnect,
Cloud

» Security, Privacy
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Next Generation Sequencing - The Big
Data Challenge

Then
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ABI 3700 lllumina NovaSeq
96 ~800 bp 6000
reads 20 billion 2X150-bp
76.8 X 103 paired reads
bases 3000 X 10° bases
~$1 per kilo

~$1 per 100 million
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Genomes

uman

Genomics, Metagenomics, Microbiomics,
Transcriptomics = Next Generation
Sequencing
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EXAFLOPS OF
COMPUTE
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Dozens of Tools But Computation
Limited to a Few Building Blocks

Applicatio Tools Smith -  Kmer Hidden Markov i Machine
ns Waterma i counting and Model (Deep)

indexing Learning

Traditional Sequence Exact sequence
Genomics  Alignment alignment

Sequence |[80.5-98.2
NGS Mapping |%

Secondary

a8l Denovo 64-99.4%
Assembly

Variant 72-93%
Calling

Calling

20-50% 40-8
0%

100
%

5-55% 30-90%

65-90%
20-30% 2-10% 35-60%

Deepvariant 100%
e.g. CANDLE 100%

)putational Buildin Jugh
S Secondary Ana s,

Md Vasimuddin, Sanchit Misra, Srinivas Aluru. bioRxiv 301903
>To identify the performance ‘characteristics and architectural bottlenecks

of the key building blocks, we performed a cross architecture comparison
using their optimized implementations

>In the process, we a/so /dent/f/ed the most eff/c1ent of the mainstream
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Smith Waterman - Many Flavors

Basic Smith Waterman - no

backtrack
AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA

AGTGACCTGGGAAGACCCTGACCCTGGGTCACAAAACTC
I//r

> Only need to store one row at a
time

> The row fits in cache

> Parallelize (vectorize and
multithread) across multiple
matrices

> Only challenge: variability in
matrix sizes - sorting helps

> 12 operations (6 int max, 4 int

add 1 cmpe 1 blend) per cell
S)Bntgh )8

Cross Architecture Comparison FLOF

1400 FLOP
1200 -
SKX KNL

P100
B 1000 -
o
v ¥ B(Achieved) SKX
O 800 gt B(Achieved) KNL
5 ol B(Achieved) P100
200 Biin (Projected) KNL with 8-bit
S 1l Cand 16-bit support with
2 P r - . m  AVX512
F a0 JH R (Projected) P100 with 8-bit
ol ' ¥ R RN “and 16-bit support
200 : 1 i
0 -

1 2 3 45 6 7 8 9 101112 13 14 15
Sequence length

etic sequences obtained by sampling sequences of various lengths from human genome hg38 chromosome 1

SKX Intel® Xeon® Platinum 8180 Processor (Skylake), KNL: Intel® Xeon Phi™ Processor 7250 (Knights Landing), P100:

Nvidia Pascal P100 GPU

SKX uses AVX512 runs int8 implementation for length 100 and int16 for all other lengths
KNL runs int8 with AVX2 for length 100 and int32 with AVX512 for all other lengths
P100 results obtained by running Smith-Waterman benchmark from NVBIO and uses int32 operations.



Smith Waterman - Many Flavors

SW in HaplotypeCaller

> Needs backtracking information

> Unlike the basic SW where best score is
the max of all cells, best score is the max
of the cells of the last row and columns

> Maximum score values need > 16 bits
(~17-19 bits)

> 27 operations (5 cmpgt, 7 add, 2 and, 5
blend, 5 max, 2 or, 1 andnot)

> Compute bound

> We achieved 157.4 GCUPS at 84%

SW in BWA-MEM

> No backtracking needed

> 8-bit precision is sufficient

> Only a diagonal band is computed

> Size of the band changes from top to bottom

> Various conditions for early exit if satisfactory
alignment is not possible

> Parallelism within one matrix is limited

> Vectorization across matrices is hampered by
irregularity

efficiency compared to peak achievabie.

SKX performance

GCUPS

int32 int16_32

> Coutd be compute or BW bound depending on

et

Dataset: Real data intercepted from
HaplotypeCaller run. Machine: SKX

> Dataset: Real data intercepted from BWA-MEM run.
Machine: SKX.

> We have achieved only 5 GCUPS so far by
vectorization across matrices.

> Benefit of vectorization is only 10x despite vector
width of 64.

> Given the imited vectorization opportunity. thisis a




FM Index Based Sequence Search -
many Flavors

Referen

g,e

g—:.._

5 »n &

A
Quer

yQ
>|Q| < 200, |R]| is in Billions; e.g.; human genome is 3 Billions in length.
> Exact search: Finding exact matches of end-to-end Q in R
>Inexact search: Allow a few mismatches or insertions/deletions while still
requiring end-to-end match

>SMEM search: At each base of Q, find the matches in R for the longest
substring of Q passing through that base that has matches in R




FM Index Based Sequence Search -

Exact search

>Reads two memory locations in a data
structure of size several GBs for each
base of the query

>Performs very little compute

>The computation for one base
calculates the memory locations to be
read for the next base

>There is no locality between
subsequent memory accesses resulting
in a lot of data coming from memory

>Due to data dependency, vectorization
within the processing of one query is

Many Flavors

not possibie.
>\Vectorization across queries is

GB/s

SKX KNL P100
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Synthetic datasets Real datasets

Query length, # Queries

>R are KNy irngpdetaematdsadmeed extensive software prefetching, while P100
meesomyemory latencies through scheduling other threads. In either case, the

problem is bandwidth bound!

>SKX performs comparable to P100, despite 1/3 the BW, due to larger caches thus

needing lower BW.

>KNL-like HBM on SKX with peak BW of 500 GB/s can increase SKX performance

by 2x.

>While for each memory access, 64B (full cache line) are read, we only need 4B.

S0, a compute in memory that can combine multlple such requests and puts only
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Pairwise Hidden Markov Model
(PairHMM)

>\Very similar to basic SW.

— Also a DP based algorithm that populates a matrix for a pair of
sequences.

>0nly main difference is that computation is done on FP
numbers.
— Only multiply and add operations are used
— Computation is mostly SP
— DP is rarely used.

7 80
& 70
Q60
&3,50 5067
2, 40
W 30
220
H 10
0

KX (avg SKX (peak) ~ P100 (avg)  P100 (peak)

Dataset: Real data
obtained by
intercepting PairHMM
<taae in



Kmer Counting

> Performed using hash table as underlying data structure

> Hash function computation is performed using vectorization

« BW bound on SKX as the amount of computation performed per byte of data read is
lower than the compute to BW ratio of SKX

« Compute bound on KNL as HBM on KNL provides much higher BW

> Insertion into hash table is performed using radix sort based hashing scheme
« The hash table is multiple GBs in size and access to it is completely irregular.

« There is very little compute making the problem bandwidth bound. Only 16B out of 64B
(cache line) accessed are needed.

« Vectorization across multiple insertions to hash table is hampered by irregular memory
access.

« Extensive software prefetching needs to be used

600
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>To the best of our knowledge, no performant stand alone implementation for
kmer counting exists for GPGPUs
>SKX performs better despite the lower memory BW due to larger caches hence
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Performance Characteristics of NGS
Secondary Analysis

>Irregular compute and irregular memory access to large data
structures is quite rampant

>Thus available opportunity of vectorization is very limited
« However, modern general purpose processors rely on vectorization to extract
performance
>Irregular memory access to large data structures requires
extensive use of software prefetching on SKX and KNL. P100
hides the latency by scheduling other threads
« For either architecture, such problems are BW bound
« The BW bound problem is further amplified by the fact that only a part of the
cache line that is accessed is used
>Integer operations at 8-bit, 16-bit and 32-bit level are quite
useful
« max, add, cmp, and, or, xor, permute, blend, shift, etc. are particularly useful
« Since DNA alphabet can be represented using 2-bits, support for 2-bit level
cmp operations will also help
>FP operations are used less often

« PairHMM is the only kernel that uses FP operations and the operations are
limited to only multiply and add

e None nf the evnencive nitimerical floatina noint oneratrionce like divvicion cAliare



Model Architecture for NGS Secondary
Analysis?
>Architecture Model:

- Data movement is a big cost (both power and time) and the
architecture should minimize the amount of data movement and the
associated cost

— The architecture should not rely on vectorization for improving
performance or reducing power requirement

— The architecture should avoid requiring software prefetching as it adds
to the cost in terms of number of instructions

— More fine grain control of cache content would be helpful - e.g.
scratchpad memory instead of cache
>Memory
- HBM needed!

— Compute in memory: that can combine data from multiple requests
for smaller data sizes before putting them on the bus thus optimizing
BW usage

>Precision levels and Operations
— Integers:
— 2-bit, 4-bit (?), 8-bit, 16-bit, 32-bit, some support for 64-bit operations.
- max, add, cmp, and, or, xor, permute, blend, shift.

— Flaa¥rtinAa nniny: CD miilFinlhyy and aAA yviarvy LiHFla ciinnaryk for ND mMaiilyinla



MICron/N1lS> Automata

Processor
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Rank of Automata Processor
Automata p — chips
Processor board Capabilities: W

Capacity 1,572,864 million
STEs

Compilation time Automata
dependent

Load time 50 milliseconds

Data Processing 1 Gbps to 8 Gbps



Protein motif

Search

Q A database of known protein
motifs

For example, tachykinins are known to excite neurons and
contract smooth muscles. Tachykinins have been shown to
modulate pain, reduce blood pressure, and increase sperm
motility.

Sequence analysis has detected

many members of the tachykinin

famPWe P from mammals, birds and fish.
Neurokinin A from mammals, birds and fish.
Neurokinin B from mammals and frogs.
Kassinin from frogs.
Hylambatin from frogs.
Phyllomedusin from a frog.
Physalaemin from a frog.
Ranamargarin from a Chinese frog.
Uperolein from frogs.
Ranatachykinins A to D from frogs.
Scyliorhinins from dogfish.
Carassin from goldfish.

Eledoisin from octopus. Georgia GCollege of
Tech || Compuiing

African
rid frog




Conversion of a protein

Pr®d ein

motif to automaton
2. PROTOMATA Omata

1. tachykinin motif in converts the ProSite

ProSite. it Al -
F-[IVFY]-G-[LM]-M- o PARBIA-INOAMNM

start="all-input">
[G>].

<activate-on-match element="T1"/></state-transition-
element>
<state-transition-element id="T1" symbol-set="[IVFY]">
<activate-on-match element="T2"/></state-transition-
element>
<state-transition-element id="T2" symbol-set="G">
<activate-on-match element="T3"/></state-transition-
element>
<state-transition-element id="T3" symbol-set="[LM]">
<activate-on-match element="T4"/></state-transition-
element>
<state-transition-element id="T4" symbol-set="M">
<activate-on-match element="T5"/>
<activate-on-match element="T6"/>

</state-transition-element>
3 . A P S D K t u rn S <or id="T5">lreport—on-high/></or>
. <state-transition-element id="T6" symbol-set="G">
ANML into a

<report-on-match/>
tachykinin
%Mo , Q

</state-transition-element>

Georgia College off
T;%h“m@

Computational Science and Engineering



ldentifying motifs in protein P cin

sequences

4. Uncharacterized
sequencesarekmgukmggh@
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LNSVAYERSAMQNYE
% @RRR
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MKILVALAVFFLVSTQL
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; WYDSDQIKEELPEPFE
sl HLLQRIARRPKPQQFF
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pvpPksDaQFVGL
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Scanning Entire Database p!
in Parallel

eln

ProSite database currently has 1309@0%&?
Entire database can be programmed using

asingle APchip
uncharacte '
rized
protein
sequences
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