Machine Learning for Science

- 1 -

Kathy Yelick Associate Laboratory Director for Computing Sciences Lawrence Berkeley National Laboratory

Professor of Electrical Engineering and Computer Sciences UC Berkeley

Three ingredients for Machine Learning

- 2 -

Experimental, Observational, and Simulation Data in Science

Image / Video Processing

Text

Genomics

Signal Processing

Graphs (Relationships)

Simulation Analytics

Machine Learning for Science

- 3 -

Superhuman "sensors" for science

Berkeley Lab advances detector technology for many fields of science, including (above CryoEM) biology, cosmology, material science, physics, and more.

Machine Learning in Science Cosmology, Climate, Cats, Catalysts and Carrots

Cosmology: Finding Features in Images

2018: 10s of millions of images/night

2000: Crowd sourcing

1990: 10s of images/night

Understanding from Observation + Simulation

Science is about understanding

- Use simulations to interpret observations
- ML (reduced order models) to accelerate simulation "campaign"
- Using DL to improve cosmological constants from simulations

CosmoFlow on TensorFlow: Trained on 8K nodes, 10 min

Office of Science

Shirley Ho (Physics), Debbie Bard (NERSC)

Features in Simulation: 3D, 4D, Adaptive, Unstructured

Machine Learning in Climate Data

Classification Instance Classification **Object Detection** Localization Segmentation

Contributors: Prabhat, Thorsten Kurth, Jian Yang, Ioannis Mitliagkas, Chris Pal, Nadathur Satish, Narayanan Sundaram, Amir Khosrowshahi, Michael Wehner, Bill Collins.

Deep Learning at 250 PF for Extreme Weather Events

Ground Truth vs Prediction

- Supervised and semi-supervised learning on CAM5 data
- 85-99% accuracy at identifying extreme climate events

Office of Science

Scaled to 250PF on Summit at ORNL; trained in 100 minutes

Thorsten Kurth et al

Use of deep learning (CNNs)

Material design with computation

Given an atomic structure,

...use quantum theory and supercomputers to determine...

$$\hat{H} \left| \psi \right\rangle = E \left| \psi \right\rangle$$

...where the electrons are...

...and what the electrons are doing.

Reduce, reuse and recycle data: Materials Project has >40,000 users

Office of

Science

Slide source Tess Smidt; Image http://www.eecs.umich.edu/courses/eecs320/f00/bk7ch0

Recognizing Motifs in 3D Materials Structures

A network with 3D translationand 3D rotation-equivariance

Tess Smidt

12

Multimodal data in agriculture

The AR1K Field Lab

- Climatic variables (temp., H20)
- Macro/micro-nutrient variables
- Sat. Imaging (6m res.)
- Frequent soil sampling
- Continuous in situ monitoring
- Semiweekly UAV hyperspectral
- GPS localized fertilizer/pesticide data
- GPS localized yields (\$/acre)

Learning Mechanistic Models

- Feature selection
 - Hyperspectral phenotypes
 - Microbes/metabolites impacts
- Design microbial amendments

Iterative Random Forest

Basu et al. 2018. PNAS.

Large-scale microbiome genomic analysis

Metagenome Assembly

- Thousands of species mixed, with errors
- No reference
- HPC MetaHipMer assembly puts the pieces together
- 2.8 TB Twitchell Wetlands -- largest of its kind?

Cluster gene/protein families at scale

Input: pairwise similarities between proteins (sparse)

Output: clusters of similar proteins

- Desired scale: 10s of billions of genes/proteins, trillions of nonzero pairwise similarities ("all metagenomes")
- Today: 282M genes in 3 hours on 2K nodes

HipMCL work by Aydın Buluç (ECRP) and Ariful Azad

Learn the relationship between features with Graphical Model Estimator

Source: https://media4.s-nbcnews.com/i/newscms/2017_25/958456/150401-dna-strand-mn-1645_9dZ4198e59853eb79be3124a876ad4fd.jpg

HPC Graphical Model Estimator Discovers Regions and Co-regions

First of kind analysis at this scale using new algorithm and high performance computing at LBNL

Koanantakool, Oh, Buluc, Morozov, Oliker, Yelick, AISTAT 2018.

Energy science from embedded sensors

Use physics-based simulations, augmented with precise, localized data-driven models

Tempered Enthusiasm for Machine Learning (Especially Deep Learning) in Science

ML Explainability is not the same as Performance

Office of

Science

Non-actionable correlation

r ~ 0.81

Correlation is not Causation

r ~ 0.99

100 million (1996)

Filtering, De-Noise and Curating Data

AmeriFlux & FLUXNET: 750 users access carbon sensor data from 960 carbon flux data years

Office of Science

Arno Penzias and Robert Wilson discover Cosmic Microwave Background in 1965

Machine Learning in Science

Excitement over many uses of ML for:

- Feature extractions from observations, experiments, and simulations
- Clustering and regression
- Dimensionality reduction for complex data
- Surrogate models to approximate expensive simulations or experiments
- Designing and controlling experiments
- Filling in missing models in simulations

A robust peer review process in science domains and great training opportunities on open science data

