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Three ingredients for Machine Learning
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Fig. 3. Schematic representation of an MS-D network with w = 2 and
d = 3. Colored lines represent 3 ⇥ 3 dilated convolutions, with each color
representing a different dilation. Note that all feature maps are used for
the final output computation.

architecture uses dilated convolutions. A dilated convolution
D

h,s with dilation s2 Z+ uses a dilated filter h that is nonzero
only at distances that are a multiple of s pixels from the center.⇤
Recently, it was shown that dilated convolutions are able to cap-
ture additional features in DCNNs that use the traditional scal-
ing approach (23). Furthermore, instead of having each layer
operate at a certain scale as in existing DCNNs, in the mixed-
scale approach each individual channel of a feature map within a
single layer operates at different scale. Specifically, we associate
the convolution operations for each channel of the output image
of a certain layer with a different dilation:

gij (zi�1)=

ci�1X

k=0

D
hijk ,sij z

k
i�1. [3]

The proposed mixed-scale approach alleviates many of the dis-
advantages of the standard downscaling and upscaling approach.
First, large-scale information about the image quickly becomes
available in early layers of the network through relatively large
dilations, making it possible to use this information to improve
the results of deeper layers. Furthermore, information at a cer-
tain scale can be used directly to inform decisions at other scales
without having to pass through layers at intermediate scales. Sim-
ilar advantages were recently found when training large multi-
grid architectures (24). No additional parameters have to be
learned during training, since the mixed-scale approach does not
include learned upscaling operations. This results in smaller net-
works that are easier to train. Finally, although dilations sij must
be chosen in advance, the network can learn which combina-
tions of dilations to use during training, making identical mixed-
scale DCNNs applicable across different problems (experi-
ments below).

Dense Connections. When using convolutions with reflective
boundaries, the mixed-scale approach has an additional advan-
tage compared with standard scaling: All network feature maps
have the same number of rows and columns as the input and
output image, i.e., mi =m and ni =n for all layers i , and hence,
when computing a feature map for a specific layer, we are not
restricted to using only the output of the previous layer. Instead,
all previously computed feature maps {z0, . . ., zi�1}, including
the input image x, can be used to compute the layer output zi .
Thus, we change the channel image computation 1 and the con-
volutional operation 3 to

z

j
i = � (gij ({z0, . . ., zi�1}) + bij )

gij ({z0, . . ., zi�1}) =
i�1X

l=0

cl�1X

k=0

D
hijkl ,sij z

k
l . [4]

⇤Alternatively, dilated convolutions can be defined without using dilated filters by
changing the convolution operation itself; see ref. 23 for a detailed explanation.

Similarly, to produce the final output image y, all feature maps
can be used instead of only those of the last layer. We call this
approach of using all previously computed feature maps densely
connecting a network.

In a densely connected network, all feature maps are maxi-
mally (re)used: If a certain useful feature is detected in a fea-
ture map, it does not have to be replicated in other layers to
be used deeper in the network, as in other DCNN architec-
tures. As a result, significantly fewer feature maps and train-
able parameters are required to achieve the same accuracy in
densely connected networks compared with standard networks.
The smaller number of maps and parameters makes it easier to
train densely connected networks, reducing the risk of overfitting
and enabling effective training with relatively small training sets.
Recently, a similar dense-connection architecture was proposed
which relied on a relatively small number of parameters (25);
however, in ref. 25 the dense connections were used only within
small sets of layers at a single scale, with traditional downscal-
ing and upscaling operations to acquire information at different
scales. Here, we combine dense connections with the mixed-scale
approach, enabling dense connections between the feature maps
of the entire network, resulting in more efficient use of all feature
maps and an even larger reduction of the number of required
parameters.

MS-D Neural Networks. By combining mixed-scale dilated convo-
lutions and dense connections, we can define a DCNN archi-
tecture that we call the MS-D network architecture. Similar to
existing architectures, an MS-D network consists of several lay-
ers of feature maps. Each feature map is the result of apply-
ing the same set of operations given by Eq. 4 to all previous
feature maps: dilated convolutions with 3 ⇥ 3 pixel filters and
a channel-specific dilation, summing resulting images pixel by
pixel, adding a constant bias to each pixel, and finally apply-
ing a ReLU activation function. The final network output is
computed with the same set of operations applied to all fea-
ture maps, using 1 ⇥ 1 pixel filters instead of 3 ⇥ 3 pixel fil-
ters. In other words, channels of the final output image are com-
puted by taking linear combinations of all channels of all feature
maps and applying an application-specific activation function to
the result:

y
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wijk z

j
i + b0k

!
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Different ways of choosing the number of channels per layer are
possible. Here, we use a simple approach with each layer hav-
ing the same number of channels, denoted by the network width
w , and the number of noninput and nonoutput layers of the net-
work denoted by the network depth d . A graphical representa-
tion of an MS-D network with w =2 and d =3 is shown in Fig. 3.
The parameters that have to be learned during training are the
convolution filters hijkl and biases bij of Eq. 4 and the weights

Fig. 4. (A–C) Example of the segmentation problem of the simulated
dataset, with (A) the single-channel input image, (B) the correct segmen-
tation with labels indicated by color, and (C) the output of a trained MS-D
network with 200 layers.

256 | www.pnas.org/cgi/doi/10.1073/pnas.1715832114 Pelt and Sethian
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Experimental, Observational, and 
Simulation Data in Science
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Image / Video Processing Text

Signal Processing Simulation AnalyticsGraphs (Relationships)
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Superhuman “sensors” for science
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Berkeley Lab advances detector technology for many fields of science, including (above 
CryoEM) biology, cosmology, material science, physics, and more.

700 GB/sec in 2018
9000x faster than 2008



UNIVERSITY OF 
CALIFORNIA 

Office of
Science

Machine Learning in Science
Cosmology, Climate, Cats, Catalysts and 

Carrots
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Cosmology: Finding Features in Images

2018: 10s of millions of images/night

2000: Crowd sourcing

1990: 10s of images/night
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Understanding from Observation + Simulation
Science is about 
understanding

• Use simulations to 
interpret observations

• ML (reduced order 
models) to accelerate 
simulation “campaign”

• Using DL to improve 
cosmological constants 
from simulations 

CosmoFlow on TensorFlow: 
Trained on 8K nodes, 10 min

Shirley Ho (Physics), Debbie Bard (NERSC)
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Features in Simulation: 3D, 4D, Adaptive, Unstructured
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Prabhat, Michael Wehner
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Machine Learning in Climate Data
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Contributors: Prabhat, Thorsten Kurth, Jian Yang, Ioannis Mitliagkas, Chris Pal, Nadathur Satish, Narayanan 
Sundaram, Amir Khosrowshahi, Michael Wehner, Bill Collins.
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Deep Learning at 250 PF for Extreme Weather Events

Ground Truth vs Prediction

• Supervised and semi-supervised learning on CAM5 data 
• 85-99% accuracy at identifying extreme climate events
• Scaled to 250PF on Summit at ORNL; trained in 100 minutes

Use of deep learning (CNNs)

Thorsten Kurth et al 



UNIVERSITY OF 
CALIFORNIA 

Office of
Science

11

...where the electrons are...Given an atomic 
structure,

Slide source Tess Smidt; Image 
http://www.eecs.umich.edu/courses/eecs320/f00/bk7ch0
3.pdf
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...and what the electrons are doing.

...use quantum theory 
and supercomputers to 
determine...

Material design with computation

Si

Reduce, reuse and recycle data: Materials Project has >40,000 users
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A network with 3D translation-
and 3D rotation-equivariance

Recognizing Motifs in 3D Materials Structures
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Rotated image CNN filter output
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Multimodal data in agriculture

• Microtopography
• Soil chemical information
• Plant characteristics

- Vigor (NDVI)
- Height/volume
- Density
- Spectral signature

The AR1K Field Lab
• Climatic variables (temp., H20)
• Macro/micro-nutrient variables 
• Sat. Imaging (6m res.)
• Frequent soil sampling
• Continuous in situ monitoring
• Semiweekly UAV hyperspectral
• GPS localized fertilizer/pesticide data
• GPS localized yields ($/acre)
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Iterative Random Forest
Breaking dimensionality curse

{X2, X7, X11}

{X1, X2, X11} {X3, X9}

{X9, X10, X11}{X1, X11}

{X3, X7, X11}

{X1, X11} {X3, X9}

{X3, X9, X10}{X2, X11}

Basu et al. 2018. PNAS.

Learning Mechanistic Models
Soil	Types EC	

(soil/salinity/moisture) P K

USDS	Soil	Map Geophysics Soil	sampling	+	EC	map

• Construct a 4D Virtual Farmland 
• Feature selection

• Hyperspectral phenotypes
• Microbes/metabolites impacts

• Design microbial amendments



UNIVERSITY OF 
CALIFORNIA 

Office of
Science

Large-scale microbiome genomic analysis
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Metagenome Assembly
• Thousands of species 

mixed, with errors
• No reference 
• HPC MetaHipMer assembly 

puts the pieces together
• 2.8 TB Twitchell Wetlands -

- largest of its kind?
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Cluster gene/protein families at scale 

• Desired scale: 10s of billions of genes/proteins, trillions of 
nonzero pairwise similarities (“all metagenomes”)

• Today: 282M genes in 3 hours on 2K nodes

16

Input: pairwise similarities 
between proteins (sparse)

Output: clusters of 
similar proteins

HipMCL work by Aydın Buluç (ECRP) and Ariful Azad
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Learn the relationship between 
features with Graphical Model 
Estimator

17Source: https://media4.s-nbcnews.com/i/newscms/2017_25/958456/150401-dna-strand-mn-
1645_9d74198e59853eb79be3124a876ad4fd.jpg Machine Learning for Science
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HPC Graphical Model Estimator Discovers Regions 
and Co-regions

receiving info from the 
senses

listening
controlling the eyes

Baseline parcellation from Glasser
[Glasser et al. 2016]

Koanantakool, Oh, Buluc, Morozov, Oliker, Yelick, AISTAT 2018.

Automatic parcellation from fMRI 
data alone

First of kind analysis at this scale using new algorithm and high 
performance computing at LBNL

Machine Learning for Science
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Energy science from embedded sensors

19 Exascale Science

Transportation Power grid

Urban systems

Earthquakes

Use physics-based simulations, augmented with precise, localized 
data-driven models
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Tempered Enthusiasm for Machine Learning 
(Especially Deep Learning) in Science
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ML Explainability is not the same as Performance
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Performance vs. Explainability
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Learning Techniques (today)

Neural Nets

Statistical
Models

Ensemble
Methods

Decision
Trees

Deep
Learning

SVMs

AOGs

Bayesian
Belief Nets

Markov 
Models

HBNs

MLNs

SRL
CRFs

Random
Forests

Graphical
Models

Explainability
(notional)

Approved for public release: distribution unlimited.

Image from DARPA’s XAI Program, David Gunning



UNIVERSITY OF 
CALIFORNIA 

Office of
Science

r ~ 0.81

Non-actionable correlation

http://www.tylervigen.com/spurious-correlations
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Correlation is not Causation

http://www.tylervigen.com/spurious-correlations

r ~ 0.99
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Filtering, De-Noise and Curating Data

Arno Penzias and Robert Wilson discover 
Cosmic Microwave Background in 1965

AmeriFlux & FLUXNET: 750 
users access carbon sensor data 
from 960 carbon flux data years
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Machine Learning in Science
Excitement over many uses of ML for:
• Feature extractions from observations, experiments, 

and simulations
• Clustering and regression 
• Dimensionality reduction for complex data
• Surrogate models to approximate expensive 

simulations or experiments
• Designing and controlling experiments
• Filling in missing models in simulations
A robust peer review process in science domains and 
great training opportunities on open science data


