The challenge: How do we make
security and safety sustainable?



How does |oT change safety?

The EU regulates safety of all sorts of devices

They asked Eireann Leverett, Richard Clayton
and me to examine what loT means for this

Once there’s software everywhere, safety and
security get entangled

How will we have to update safety regulation
(and safety regulators) to cope?

We studied cars, medical devices and grid
equipment but the lessons are much broader



The Big Challenge

Established non-IT industries usually have a
static approach — pre-market testing with
standards that change slowly if at all

The time constant is typically a decade

When malicious adversaries can scale bugs
into attacks, industries need a dynamic
approach with patching, as in IT

The time constant is then typically a month



Broad questions include...

Who will investigate incidents, and to whom
will they be reported?

How do we embed responsible disclosure?

How do we bring safety engineers and
security engineers together?

Will regulators all need security engineers?

How do we prevent abusive lock-in? Note the
US DMCA exemption to repair tractors ...



Policy recommendations included

Pushing vendors to ensure that products can be
patched if need be

Requiring a secure development lifecycle with
vulnerability management (ISO 29174, 30111)?

Creating a European Security Engineering Agency
to support policymakers (now: ENISA)

Extending the Product Liability Directive to
services

Updating NIS Directive to report breaches and
vulnerabilities to safety regulators and users



The punch line

* Phones, laptops: patch them monthly, but
make them obsolete quickly so you don’t have
to support 100 different models



The punch line

* Phones, laptops: patch them monthly, but
make them obsolete quickly so you don’t have
to support 100 different models

e Cars, medical devices: we test them to death
before release, but don’t connect them to the
Internet, and almost never patch



The punch line

* Phones, laptops: patch them monthly, but
make them obsolete quickly so you don’t have
to support 100 different models

e Cars, medical devices: we test them to death
before release, but don’t connect them to the
Internet, and almost never patch

* So what happens to support costs now we’re
starting to patch cars?



Implications for R&D

Research topics to support 20-year patching
Include a more stable and powerful toolchain

Crypto teaches how complex this can be

Cars teach: how do we sustain all the test
environments?

Control systems teach: can small changes to
the architecture limit what you have to patch?

Android teaches: how do we motivate OEMs
to patch products they no longer sell?



Implications for research and teaching

* Since 2016-7 I've been teaching safety and
security together in the same course to first-
year undergraduates

 We're starting to look at what we can do to
make the tool chain more sustainable

* For example, can we stop the compiler writers
being a subversive fifth column?

* Better ways for programmers to communicate
and document intent might help



The grand challenge for research

If the durable goods we’re designing today are
still working in 2037 then things must change

Computer science = managing complexity

The history goes through high-level languages,
then types, then objects, and tools like git,

Jenkins, Coverity ...

What else will be needed for sustainable
computing once we have software in just

about everything?



More ...

e Our papers “Making security sustainable” and
“Standardisation and Certification in the
Internet of Things” are on my web page

http://www.cl.cam.ac.uk/~rjal4d/

* Orsee “When Safety and Security Become
One” on our blog

https://www.lightbluetouchpaper.org

which also has a couple of videos



