The challenge: How do we make security and safety sustainable?

Ross Anderson Cambridge

How does IoT change safety?

- The EU regulates safety of all sorts of devices
- They asked Éireann Leverett, Richard Clayton and me to examine what IoT means for this
- Once there's software everywhere, safety and security get entangled
- How will we have to update safety regulation (and safety regulators) to cope?
- We studied cars, medical devices and grid equipment but the lessons are much broader

The Big Challenge

- Established non-IT industries usually have a static approach – pre-market testing with standards that change slowly if at all
- The time constant is typically a decade
- When malicious adversaries can scale bugs into attacks, industries need a dynamic approach with patching, as in IT
- The time constant is then typically a month

Broad questions include...

- Who will investigate incidents, and to whom will they be reported?
- How do we embed responsible disclosure?
- How do we bring safety engineers and security engineers together?
- Will regulators all need security engineers?
- How do we prevent abusive lock-in? Note the US DMCA exemption to repair tractors ...

Policy recommendations included

- Pushing vendors to ensure that products can be patched if need be
- Requiring a secure development lifecycle with vulnerability management (ISO 29174, 30111)?
- Creating a European Security Engineering Agency to support policymakers (now: ENISA)
- Extending the Product Liability Directive to services
- Updating NIS Directive to report breaches and vulnerabilities to safety regulators and users

The punch line

 Phones, laptops: patch them monthly, but make them obsolete quickly so you don't have to support 100 different models

The punch line

- Phones, laptops: patch them monthly, but make them obsolete quickly so you don't have to support 100 different models
- Cars, medical devices: we test them to death before release, but don't connect them to the Internet, and almost never patch

The punch line

- Phones, laptops: patch them monthly, but make them obsolete quickly so you don't have to support 100 different models
- Cars, medical devices: we test them to death before release, but don't connect them to the Internet, and almost never patch
- So what happens to support costs now we're starting to patch cars?

Implications for R&D

- Research topics to support 20-year patching Include a more stable and powerful toolchain
- Crypto teaches how complex this can be
- Cars teach: how do we sustain all the test environments?
- Control systems teach: can small changes to the architecture limit what you have to patch?
- Android teaches: how do we motivate OEMs to patch products they no longer sell?

Implications for research and teaching

- Since 2016–7 I've been teaching safety and security together in the same course to firstyear undergraduates
- We're starting to look at what we can do to make the tool chain more sustainable
- For example, can we stop the compiler writers being a subversive fifth column?
- Better ways for programmers to communicate and document intent might help

The grand challenge for research

- If the durable goods we're designing today are still working in 2037 then things must change
- Computer science = managing complexity
- The history goes through high-level languages, then types, then objects, and tools like git, Jenkins, Coverity ...
- What else will be needed for sustainable computing once we have software in just about everything?

More ...

 Our papers "Making security sustainable" and "Standardisation and Certification in the Internet of Things" are on my web page http://www.cl.cam.ac.uk/~rja14/

 Or see "When Safety and Security Become One" on our blog

https://www.lightbluetouchpaper.org which also has a couple of videos