Security at the Edge
For Emerging Distributed Sensor Networks

Leadership in Embedded Security Workshop
Computing Community Consortium
August 13, 2018

Samuel H. Fuller
CTO Emeritus and Distinguished Scientist
Analog Devices Inc.
Visiting Scientist, MIT
3rd Exponential Wave of Information & Computing Technology

- Mainframes
- Circuit Switching
- Packet Switching
- Laptop
- PC
- Servers
- Smart Phone
- Tablet
- Wireless
- Big Data Analytics
- IoT
- Ubiquitous Sensing

- 2030
- 2020
- 2010
- 2000
- 2001
- 2010
- 2020
- 2030
Analog Physical Signal to Digital Information

IoT Authentication and Security

Internet and Cloud Security

Cloud

Compute & Storage
High(est) Level View of Security Risks

 Encryption
 - Two types: Symmetric key encryption & Public Key encryption
 - Deep mathematical foundation
 - Critical toolset for security
 - Research opportunity: quantum secure PKI

 Security Protocols
 - Enable secure communication between parties
 - Not deep mathematics
 - Complicated but robust logic.

 Implementation in Hardware and Software
 - Dozens of bugs/weaknesses per 1000 lines of code
 - Basis for many successful attacks. **Big Problem**

 Human Behavior
 - Social engineering: fraud, trickery and impatience. **Very Big Problem**
The “Silent Third Party”: Manufacturer’s HW/SW Platform
Complexity is the Enemy of Security

Challenges faced by the Silent Third Partner in Security

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Maximum Complexity of Trustworthy “Kernel”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td>less than 10K lines of code</td>
</tr>
<tr>
<td>10^{12} bits</td>
<td></td>
</tr>
<tr>
<td>Hardware</td>
<td>less than 10K logic gates</td>
</tr>
<tr>
<td>10^{10} transistors</td>
<td></td>
</tr>
<tr>
<td>People</td>
<td>1 team of less than 10 people.</td>
</tr>
<tr>
<td>10^3 people</td>
<td></td>
</tr>
</tbody>
</table>
Authentication is particularly critical in Distributed Edge Nodes

Experience from Authentication in traditional Distributed Systems

- Public Key Encryption proven essential for remote authentication
 - Example: Kerberos from N-S TTP protocol to PKI protocol.
- Two factor authentication often used for intermittent sensitive interactions

What is different about Authentication for Distributed Edge Nodes?

- Two Factor authentication difficult when no trusted agent present at Edge Node. More reliance on continuous connectivity or repeated authentication
- Often Edge Node is severely power constrained. E.g. battery powered or energy harvested from environment

Energy efficient strong authentication protocols required.
Embedded System Technology Stack

- Embedded Software
 - Embedded application secure update mechanism
 - Secure boot/kernel (<< 10K instructions)
 - Trusted HW Zone. (<< 10K gates)
 - Encryption IP
 - Root of Trust
 - Security from side channel attacks
 - Tamper proof package
If You Remember Nothing else today:

- **Security is a capability of the system** not a component
 - System is only as secure as it’s weakest link
 - Encryption is just one of the necessary links

- **Complexity is the enemy of Security**
 - What (1) hardware, (2) software and (3) humans must be trusted?

- **There is no silver bullet**
 - Continual Arms Race of attack/defend/attack/ ….

- **Authentication of IoT nodes is critical**
 - It begins with a secure Root of Trust
Security at the Edge for Emerging Distributed Sensor Networks

Samuel H. Fuller
CTO Emeritus and Distinguished Scientist
Analog Devices Inc.
Visiting Research Scientist, MIT
August 13, 2018