Security at the Edge For Emerging Distributed Sensor Networks

Leadership in Embedded Security Workshop
Computing Community Consortium
August 13, 2018

Samuel H. Fuller
CTO Emeritus and Distinguished Scientist
Analog Devices Inc.
Visiting Scientist, MIT

Analog Physical Signal to Digital Information

Security Threats & Defenses

AHEAD OF WHAT'S POSSIBLE

Tampering with HW or SW

High(est) Level View of Security Risks

► Encryption

- Two types: Symmetric key encryption & Public Key encryption
- Deep mathematical foundation
- Critical toolset for security
- Research opportunity: quantum secure PKI
- ► Security Protocols
 - Enable secure communication between parties
 - Not deep mathematics
 - Complicated but robust logic.
- ► Implementation in Hardware and Software
 - Dozens of bugs/weaknesses per 1000 lines of code
 - Basis for many successful attacks. Big Problem
- ▶ Human Behavior
 - Social engineering: fraud, trickery and impatience. Very Big Problem

The "Silent Third Party": Manufacturer's HW/SW Platform

Embedded Node Ecosystem

Complexity is the Enemy of Security

Challenges faced by the Silent Third Partner in Security

Complexity Maximum Complexity of Trustworthy "Kerne	eľ"
---	-----

Software to bits 103 than for hires of coc	▶ Software	10 ¹² bits	less than 10K lines of	code
--	------------	-----------------------	------------------------	------

► Hardware 10¹⁰ transistors less than 10K logic gates

▶ People 10³ people 1 team of less than 10 people.

Authentication is particularly critical in Distributed Edge Nodes

► Experience from Authentication in traditional Distributed Systems

- Public Key Encryption proven essential for remote authentication
 - Example: Kerberos from N-S TTP protocol to PKI protocol.
- Two factor authentication often used for intermittent sensitive interactions

► What is different about Authentication for Distributed Edge Nodes?

- Two Factor authentication difficult when no trusted agent present at Edge Node. More reliance on continuous connectivity or repeated authentication
- Often Edge Node is severely power constrained. E.g. battery powered or energy harvested from environment
- ► Energy efficient strong authentication protocols required.

Embedded System Technology Stack

Embedded application secure update mechanism

Secure boot/kernel (<< 10K instructions)

Trusted HW Zone. (<< 10K gates)

Encryption IP

Root of Trust

Security from side channel attacks

Tamper proof package

If You Remember Nothing else today:

► Security is a capability of the system not a component

- System is only as secure as it's weakest link
- Encryption is just one of the necessary links
- **▶** Complexity is the enemy of Security
 - What (1)hardware, (2)software and (3)humans must be trusted?
- ► There is no silver bullet
 - Continual Arms Race of attack/defend/attack/
- ► Authentication of IoT nodes is critical
 - It begins with a secure Root of Trust

Security Protocols

HW & SW Implementations

Human Behavior

Security at the Edge for Emerging Distributed Sensor Networks

Samuel H. Fuller

CTO Emeritus and Distinguished Scientist
Analog Devices Inc.
Visiting Research Scientist, MIT
August 13, 2018

