CCC
Leadership in Embedded Security Workshop
2017

Tomas Vagoun
Cybersecurity R&D Coordinator
National Coordination Office for NITRD
Strategic Plan for Federal Cybersecurity R&D

Federal Cybersecurity R&D Goals
- S&T for **effective and efficient risk management**
- S&T for **sustainably secure systems development and operation**
- S&T for **effective and efficient defensive deterrence**

Critical Dependencies
- Scientific foundations
- Risk management
- Human aspects
- Transition to practice
- Workforce development
- Infrastructure for research

Maximum security
Trends in Hardware Security Research

- Supply chain: tamper resistant hardware, Trojan detection, split manufacturing, IC Tracing
- Security of split manufacturing 3D IC
- Side Channels
 - Techniques to suppress side channel
 - Techniques to create/detect covert channels
 - Application of side channel: Trojan Detection
- Security implications of emerging technologies such as NVM
- Secure execution environments, e.g. security enclaves (improvement over Intel SGX or AMD SEV)
- CPS/IoT: Increased interest in secure hardware - new threat models
- Secure Design and Verification: better secure design, test, and verification for hardware
- Post-Quantum Crypto
- Continued interest in
 - Physical Unclonable Functions (PUF) and Random Number Generators (RNG)
 - Detection of IC counterfeiting
 - Logic obfuscation and logic locking
 - Homomorphic encryption
Trusted Microelectronics as a Strategic Issue

Issue
- Most COTS electronics used in the US, including those used by the DoD, are manufactured overseas—creating a significant security risk from potential tampering for the Nation
- With large strategic investments (e.g., $150B by China, $100B by Saudi Arabia) and national subsidies, Asia is becoming the world-class center of microelectronics design and production, severely handicapping the US national security interests

What actions are needed to reverse this trend?
- Invest in innovative secure design solutions, which would allow the USG to use offshore state of the art commercial microelectronics capabilities, while satisfying the needs for trust
- The secure design approach combines SW and HW assurance tools and verification capabilities to provide for trusted manufacturing outcomes

Example
- DoD Microelectronics Innovation for National Security & Economic Competitiveness (MINSEC) Program
- DoD to invest $2 billion in MINSEC between fiscal year 2019 and FY-2023
Trusted Microelectronics: New Trust and Assurance Approaches

Design for trust
- Designing techniques to limit full use/functionality to trusted operation

IP protection
- Preventing exploitation, including control of use, concealment, reconfiguring, partitioning, or employment

Low-volume/high-mix production
- Innovative methods to permit cost-effective, Trusted and assured low volume manufacturing of state-of-the-art ICs

Electronic component markers
- Tagging/marking ICs and subassemblies to authenticate and track supply chain movements

Imaging technologies and forensics
- Advanced capabilities to efficiently evaluate dense, state-of-the-art commercial components

Source: DoD/OSD