Machine Learning and Embedded Security

Farinaz Koushanfar
Professor and Henry Booker Faculty Scholar
Founder and Co-Director, Center for Machine-Integrated & Security (MICS)
University of California San Diego

Big data and automation revolution

Computer Vision ,; 3D Reconstruction ~ Cyber-Physical Systems

A

ol g}:\f‘ Y .

Search Engines Q

Google

a5 Microsoft

o0
Bai®&EE

Machine learning

* General Al = P
* Scalability | +
* Global Data Sharing

on embedded devices

i —

g

ybi

aouabiaju| |esauan)

Embedded Al Data &
Learmed Model

- Mobile
* Specific Al o] * Low Power Operation
« UI/UX = * Real-time Autonomous Learning
* Limited Data Sharing
Low Real-Time Operation High

Requirement

Example: Embedded vision applications

ADAS & Autonomous Cars Augmented Reality Drones

Reliability of ML on embedded devices

 Reliability of Al systems is one of the major obstacles for the wide-scale adoption

of emerging learning algorithms in sensitive autonomous systems such as
unmanned vehicles and drones

* Performance is the most widely pursued challenge now: yet to be solved!

* Some standing security challenges
e Adversarial examples
* |P vulnerabilities
* Trusted execution
* Privacy

* Anonymity

* Inference on encrypted data

Safe embedded ML technologies in UCSD/MICS

DeepFence DeepMarks DeepSigns

The first comprehensive defense | The first unremovable DL watermarks The first unremovable DL fingerprints

Against adversarial DL on ES Disgonal

Line

N>
X

\/
i
f;’

WX

\/
W
i

N
;‘:

()

N\

DeeplPTrust DeepSecure & Chameleon Secure Federated ML
The first hybrid trusted F)Iatform The most efficient DL on encrypted data Efficient secure distribued&federated ML
& DL for IP protection

Private Key can erator's
)

8.)
&?- Uploaded Encrypted Data .
— " —

A Intermediat
3 ’ =0 " et
a, 3 Encrypted Result =P \
B3 \\
- N eeeees - Transt d Solution
a? A kg el I
< Cloud Client

L)
Ax=b

Customer’s Private
Docker Container

Ot o ey arcpte,sveninsic e Data Owners Cloud Server

DeepFense

The First accelerated and automated defense against adversarial learning

Adversarial learning

Reliability is one of the major obstacles for the wide-scale adoption of emerging
Deep Learning (DL) models in sensitive autonomous systems such as unmanned

vehicles and drones

Consider an autonomous car which leverages a DL model to analyze front scene

DeepFense contribution

Unsupervised model assurance as well as defending against the adversaries

Model assurance by checkpointing DL models at intermediate points

o parallel models with various accuracy & robustness

> Hardware-acceleration for just-in-time response

Proof-of-concept evaluation on various benchmarks and attacks

Automated accompanying API

DeepFense framework

Robustness and model accuracy are distinct
objectives with a trade-off

We checkpoint the intermediate variables
to find atypical samples

Checkpoint Checkpoint
With the proposed defense methodology: Checkpoint

* The victim model is not altered

* The accuracy is not dropped
* The adversary would require to deceive all defenders to success

1 T T

Global flow

| modules

Victim model

Prediction

Defender

reliable?

_ uIs this prediction

Input training
data

Defender

layer 1

‘ victim model }

Dictionary
learning

Charectrizing average
SNR for sparse recovery

]

A\
7

a\v’é': A S EA\v é'vlk
\\,‘,‘10»"/(»\«‘)‘, >4
b%‘;"\ QN ,’(t*’o’<
20 0.9.0n" e 22X SR

S
X
4
X

D

[Ivtv
A\ \Y /I

%

)

\

Defender
layer 2

"

</
X)
:
Al
%
A
A

\
)

V‘
Vi

,I

victim model

{

)

Defender
layer 3

defender model}] Retrain the replicate to
enforce separability

Ensemble learning of
subspaces

|
distand dal Jreplicate to
efender mode sieparability

Ensemble learning of
subspaces

security
parameter

A~
»
Ensemble learning of defendar-miodal
subspaces
security
parameter

Replicating the
victim model

Retrain the replicate to
enforce separability

Training latent defender

Training each redundancy module involves three main steps:

Replicating the victim neural network

Fine-tuning the replicated network with a modified loss function(! to condense and separate the data features in the
pertinent space

L = Lyictim + Lclustering

Learning the PDF of the data abstractions as a union of explored subspaces to be used later for validating the
legitimacy of test samples

Statistical testing for detection

* Adversarial and legitimate samples differ in statistical properties
* Even in the victim model (left), adversarial samples deviate from the PDF of legitimate samples
* Our unsupervised defense mechanism (right) characterize the underlying space by data
realignment and separation of the PDFs corresponding to adversarial and legitimate samples

05 B Legitimate Samples
W Adversarial Samples

BN Legitimate Samples
M Adversarial Samples

o
$

=4
L

S
[

Normalized # of Samples
o

0,0 ".III-.. .
00 02 0.4 0.6 08 1.0 12 1.4

Distance to Center

0.2 0.4 0.6
Distance to Center

Training Input defenders

Training each input redundancy module involves two main steps:

Dictionary learning

° Learning separate dictionaries for each class of data

Input training
data

Dictionary Charactrizing typical PSNR nput checkpain
learning ™ for sparse recovery | module

Security
parameter

Characterizing typical PSNR in each category

»

° Profiling PSNR of legitimate samples in each class

RN =R
NN Y-
(Sl [N
KL | sl | OIS
] ol WIS L e]|
dENSEERLE
mENENGUEN
CENOENPD N
Fe=EEr S -

I_
I
I
|
I
I
|
I
I
I
|
|
I
I
L

Input and latent defenders

The impact of perturbation level on the pertinent adversarial detection rate for three different security

parameters (cut-off thresholds) on MNIST benchmark

Detection Rate
Q
B

FGS Attack, SP = 0.1%

4
o

————
e
-
”
-~
-
-
”
-

T

Latent Defender
Input Defender

Detection Rate
o
b

| ,__.;/ — == Latent+Input Defenders
0:3: 0.2 0.3 0.4 05
Epsilon

L,
=}

e
L

=4
N

FGS Attack, SP = 1%

o
o

o-’.—--"——__
ﬂ‘f
-

-

Latent Defender
——— Input Defender

| '___—/ — —- Latent+Iinput Defenders
0.1 0.2 0.3 0.4 0.5
Epsilon

Detection Rate
Q
»

B
=]

o
]

e
o

o
N

0.0

FGS Attack, SP = 5%

= s v e e, pe—
-— —
——

Latent Defender
— Input Defender

__,_-/ — —- Latent+Input Defenders
0.1 0.2 0.3 0.4 05
Epsilon

The use of input dictionaries facilitate automated detection of adversarial samples with relatively high
perturbation (e.g., € > 0.25) while the latent defender module is sufficient to distinguish malicious
samples even with very small perturbations

ion for DeepFence

Hardware accelerat

* Reducing runtime overhead by parallel execution of defender modules on FPGA

\,%0,

AN

N

Checkpoint 3

\7 [\~
077
('A Y
XPRXX

Y 1/, / I} \/ \\
"r// AN /1N /\ 7 \\\u
SIS
IR
2N

NNA\V2A\ V%
L
SCKAXK)

Checkpoint 2

Checkpoint 1

Hardware/Software co-optimized
acceleration!®-&-11.2)

Customized Encoding Module FPGA Platform

Retrain
parameters

Error < g?

101 ‘ i
l on | — Synthesis
Binary |

Parameter Files

Error
Assesment

A

Parameter

Platfiorm
specifigations

Customized HLS Kernels

Kernel Customization

CPP
Parameterized
DNN
Parameters ._______________
Error
Tolerance
(&)

User Inputs

[1] Mohammad Samragh, Mohsen Imani, Farinaz Koushanfar, Tajana Rosing "LookNN: Neural network with no multiplication." DATE 2017
[2] Mohammad Samragh, Mohammad Ghasemzadeh, Farinaz Koushanfar, “ Customizing neural networks for efficient FPGA implementation” FCCM 2017

Automation and API

We provide automated APIs for training input & latent defender modules

> Our API takes the maximum number of defender modules as a constraint along with the victim
model and training data to generate the corresponding defenders

Each trained defender is then mapped to a hardware accelerator for efficient execution
of defender modules and minimize the corresponding run-time overhead

[1] B. Rouhani, M. Javaheripi, M. Samragh. T. Javidi, F. Koushanfar "DeepFence: Characterizing and Defending Adversarial Samples." ICCAD’18

Ign experiences

Practical des

DeepFense

v/A.p//A,rﬂé,,v&\;
NNSNerod
KRG
BB

Attack scenarios

We evaluate the performance of the proposed countermeasure against the following three attack scenarios:

I. Fast Gradient Sign!*!

° Minimizes the L., of the perturbation
° One-shot update rule: X « X + € X sign(Vxf)

Il. JSMAE]

> Minimizes the L, norm of the perturbation and the number of altered pixels
° |terative update over selected pixels

I1l. Deepfooll3]

> Minimizes the L, norm of the perturbation

o X« X+ EX Popt [1] 1.). Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples”
. 13 [2] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The limitations of deep
° Pope is the optimal perturbation in each iteration defined in ' |earning in adversarial settings”
. . 4 [3] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accurate method to
IV. carllnl&wagnerl-z[] fool deep neural networks”
[4] N. Carlini, D. Wagner, “Towards evaluating the robustness of neural networks”

Black-box attacks

Area Under Curve (AUC) score of MRR methodology against different attack scenarios for
MNIST, CIFAR10, and ImageNet benchmark

In this experiment, the attacker knows everything about the DL model but is not aware
of the defense mechanism

MNIST CIFARIO ImageNet
FGS 0.996 0.911 0.881
JISMA 0.995 0.966 -
Deepfool 0.996 0.960 0.908
CarlinilL.2 0.989 0.929 0.907
BIM 0.994 0.907 0.820

Adaptive white-box attack

Our MRR methodology is significantly more robust against prior-art works in face of
adaptive white-box attacks

In this experiment, we have considered Carlini and Wagner adaptive attack assuming
that the attacker knows everything about the DL model and defense mechanism

MRR Methodology (White-hox Attack) Prior-Art Defenses (Gray-box Attack)
Security Parameter SP=1% SP=5% Magnet | Efficient Defenses | APE-GAN
Number of Defenders N=0 N=1 N=2 N=4 N=8 N=16 | N=0 N=1 N=2 N=4 N=8 N=16 || N=I16 - -
Defense Success - 8% 3% 64% 65% 66% - 46% 63% 69% 81% 84% 1% 0% 0%
Normalized Distortion (L) || 1.00 1.04 1.11 112 131 138 || .00 1.09 128 128 163 157 137 1.30 1.06
FP Rate - 29% 44% 6.1% 78% 8.4% - 69% 112% 162% 21.9% 27.6% - - -

[1] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2017
[2] Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. Ef- ficient defenses against adversarial attacks. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. ACM, 2017.
[3] Shiwei Shen, Guoqing Jin, Ke Gao, and Yongdong Zhang. Ape-gan: Adversarial perturbation elimination with gan. ICLR, 2017

[4] Nicholas Carlini and David Wagner. “Magnet and efficient defenses against adversarial attacks are not robust to adversarial examples.” arXiv preprint arXiv:1711.08478, 2017.

DeepSigns and DeepMarks

The First Deep Learning IP Protection for both black-box and white-box settings +

acceleration and automation for embedded applications

Motivation for ML IP protection

* Training a high-performance Deep Neural Network (DNN) is expensive
since the process requires:

O Massive amount of proprietary training data

o Significant computational resources

* Pre-trained DNN is considered as the Intellectual Property (IP) of the
model builder and needs to be protected

* Concern: how to prove the ownership of a DNN after it is deployed?

Challenges for watermarking DL

*"Various appli€ation scenarios: AlexNet (white-box)

o White-box: DNN is shared with the public mimim ~
and model internal details are accessible Bl 1ol | EINIEID
HIEIEIEIRIBEIEIRIE IR L S
o Black-box: DNN is deployed in a remote R IEINIEIEIEIEIBIEIBIEIE
i] . ol ol ol 1o ol o O olI—1 1=
service and only the output is accessible HEHEHE 2|2 2 | E
» State-of-the-art solutions: - -)
. _ . DL Service
o.Welghts yvatermarkl.ng [1]: only applicable (black-box)
in the white-box setting
_ _ User A b
o Zero-bit watermarking [2,3]: embed a Query image P ‘
zero-bit watermark (WM) in black-box .4 > I
Image label

[1] Y. Uchida, et al. ‘Embedding watermarks into deep neural networks’, ICMR 2017

v
-
33

[2] E. L. Merrer et al. ‘Adversarial frontier stitching for remote neural network watermarking’ arXiv preprint 2017 .
[3] Y Adi, et al. “Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring’, USENIX 2018

DeepSigns’ Contribution

* Suggesting the first end-to-end watermarking framework for systematic
IP protection in both white-box and black-box setting

* Yielding high detection rate and low false alarm rate while preserving
the prediction accuracy

* Robust against a variety of model modification attacks and watermark
overwriting attacks

* Devising an Application Programming Interface (API) to automate the
adoption of DeepSigns to various DL models, including convolutional,
residual, and fully-connected networks.

DeepSigns methodology

* DeepSigns white-box watermarking

o Embedding: Train/Fine-tune the target DNN with an activation regularized loss
(Lyp) in addition to the conventional cross-entropy loss (£y):

L=Ly+ yvLyy(T(activations), b)
= J': transformation function defined by the model owner
= b: identity information specified by the owner (a binary string)
= y: watermark regularization strength

o Extraction: Threshold the transformation of the activations obtained from the
queried DNN:

b’ = Threshold(T (activations’), 0.5)
= |deally, b’ = b (bit error rate is 0) when Ly, is sufficiently minimized during training

DeepSigns methodology (Cont’d)

* DeepSigns black-box watermarking
o Embedding: Train/Fine-tine the target DNN with a set of watermarking key image,
key label pairs (X*€Y, ykey).

= The WM key set (X*¢¥,Y*€¥) is designed such that the original model has low accuracy
on the key set

= The mixture of the training data and (X"ey, Ykey) is used in DNN training to preserve
the prediction accuracy while embedding the WM

o Detection: Model owner queries the remote DL service with X*¢¥ and compares
the responses with Y*¢Y. The WM is decided to be present if the accuracy on the
key set is larger than the pre-defined threshold

Automation of DeepSigns

* DeepSigns provides wrapper that can be readily integrated with popular
DL frameworks, including TensorFlow, PyTorch, Theano

DeepSigns Wrapper Utilization in white-box setting
from DeepSigns import subsample_training_data
from DeepSigns import WM _activity_regularizer

from DeepSigns import get_activations

from DeepSigns import extract. WM_from_activations
from DeepSigns import compute_BER

from utils import create_marked_model

create WM trigger keys

X¥*eY = subsample_training_data(T, {Xtrain ytrainy

instantiate customized WM activity regularizer

WM_reg = WM_activity_regularizer(A;, A5, b, A)

model = create_marked_model(WM_reg , model topology)
embed WM by standard training of the marked model
model.fit(Xtran ytrain)

extract WM from the activation maps and compute BER
us*M= get_activations(model, X*€¥, 1, T)

b= extract_WIVI_from_activations(uls*M ,A)

BER = compute_BER(b, b)

DeepSigns Wrapper Utilization in black-box setting
from DeepSigns import key_generation

from DeepSigns import count_response_mismatch
from DeepSigns import compute_mismatch_threshold
from utils import create_model

generate WM key pairs

model = create_model(model topology)
model.load_weights(‘baseline_weights’)

(Xkey, ykey) = key generation(model, K, Xt"%")
xretrain _ np.vstack(Xkey Xtrain)

yretrain _ np.vstack(Ykey Ytrain)

embed WM by finetuning the model with the WM key
modeLﬁt(Xretrain Yretrain)

query model with key set to detect WM
YPred = model.predict(X*eY)

m = count_response_mismatch(Y?re4 | ykey)
0 = compute_mismatch_threshold(p, K, C)
WM _detected=1ifm<6Belse 0

DeepSigns performance

* DeepSigns Performance:
o Functionality preserving: The watermarked model achieves the same level of
accuracy compared to the baseline model

Dataset || Baseline Accuracy | Accuracy of Marked Model || DL Model Type DL Model Architecture
MNIST 98.54% ;é;;% 91; - 3‘}% MLP 784-512FC-512FC-10FC
CIFARIO | T847% | giaea—som0% CNN | 64C3(1)-64C3(1-MP2(1 - S12FC-0FC
CIFAR10 91.42% 9K1282 090 BI;O;%/E WideResNet Please refer to [32].
ImageNet 74.72% 7132 12 (2) : ResNet50 Please refer to [4].

DeepSigns performance (cont’d)

* DeepSigns Performance:

o Robustness against pruning attack: Tolerate up to 90%, 99%, and 99.5%
parameter pruning on MNIST, CIFAR-10, and ImageNet dataset, respectively

o Robustness against fine-tuning: The embedded WM can be detected after the
marked model is fine-tuned

o Robustness against overwriting: The original WM remains detectable after the
attacker embeds a new WM using the same approach

O Capacity: Allows up to 64 bits and 256 bits WM embedding on MNIST and
CIFAR10 dataset

O Security. DeepSigns watermarking method leaves no tangible footprint in the
model, thus the attacker cannot detect the presence of the WM

Motivation for DL fingerprinting

* Digital watermarking technique cannot distinguish different users who
are using the same IP provided by the model owner

* If IP infringement is discovered, how to determine which user has
misused the IP? — Fingerprinting!

* Digital Fingerprinting of DNNs: make each distributed DNN unique and
distinguishable

Challenges for fingerprinting

* There are no prior works on digital fingerprinting of DNNs

* Existing DNN watermarking frameworks only consider the singer-user
scenario and provide ownership proof for IP protection

* How to provide a robust, collusion-secure solution that supports both
IP protection and Digital Right Management (DRM) for DNNs in a
multi-user setting?

DeepMarks’ contribution

* Proposing the first end-to-end fingerprinting methodology for systematic
IP protection and DRM in the DL domain

* Enabling unique identification of users

* Robust against a variety of model transformation attacks and fingerprint
collusion attack

* Devising an (API) to automate the adoption of DeepMarks fingerprinting
technique to various DNN architectures

DeepMarks methodology

* DeepMarks includes two modules for fingerprinting a DNN:

o Fingerprint construction: The model owner generates an anti-collusion codebook
(ACC, [4]) C and an orthogonal basis matrix U to construct FPs for all users:

fj = Xi=1bij u;, forj=1,..,n,and b;;=2¢;; - 1.
o Fingerprint embedding: The owner trains/ fine-tunes the target DNN with the
following regularized loss:
L= Ly+ yMSE(fj —Aw)
= f;: fingerprint for j* user
= A: secret projection matrix specified by the owner
= w: weights selected by the owner

= y: fingerprint regularization strength
[4] Y. Yu et al, “Group-oriented anti-collusion fingerprint based on BIBD code’, EBISS 2010

DeepMarks methodology

* DeepMarks supports the following two usages:

o User identification: The model owner extracts the code-vector (c;’) from the
weights of the queried DNN by computing:

fi=Aw'
bij'+ 1
A R J
b] _f]' U G = 2

The recovered code-vector ¢;’ is compared with the codebook C to uniquely identify the user.

o Collusion detection: The model owner extracts the code-vector from the colluded
DNN and uses the property of anti-collusion code to uniquely identify the colluders

colluders = ACC_identify(C, c.oituded)

DeepMarks automation

DeepMarks Wrapper Utilization

¢ Dee p M a rkS p Frovi d es WraQ‘zer from DeepMarks import generate_BIBD_ACC_codebook
. from DeepMarks import FP_weight_regularizer
th at IS COM pat| b I e W|th exi St' ng from DeepMarks import extract_FP_from_weights
f k I from DeepMarks import identify_user
D I— rameworks (e g . Te NSOor F OW; from DeepMarks import detect_colluders
PyTO rc h’ Th ean O) from utils import create_marked_model
model owner generates codebook for all users
° Th e Wra p pe r su p po rts tWO C = generate_BIBD_ACC_codebook(v, n, k)
foriin range(n):
ut| | |Zat | ons: ## instantiate customized FP weight regularizer for it*user
FP_reg = FP_weight_regularizer(A, c;, A)
O U ser |d e ntificatio N model = create_marked_model(FP_reg , model topology)
i . ## embed FP by standard training with FP regularizer
o Collusion detection model fit(Xrein ytrain)

extract FP from the weights and identify unique users

¢ = extract_FP_from_weights(Ww, A)

1 = identify_user(¢, C)

detect participants of collusion attack from the colluded weights
icottudea = detect_colluders(weoyyged, €)

DeepMarks performance evaluation

* DeepMarks Performance:

o Functionality preserving: The fingerprinted model achieves a comparable
accuracy as baseline model

Benchmark MNIST-CNN CIFAR10-WRN
: : Fine-tune without | Fine-tune with . Fine-tune without | Fine-tune with
Setting Baseline q . . Baseline : :
ngerprint fingerprint fingerprint fingerprint
Test Accuracy (%) 9052 99.66 09,72 91.85 91.99 92.03

o Robust against parameter pruning: Tolerate up to 95% and 99% parameter

pruning on MNIST and CIFAR10 benchmarks
o Robust against fine-tuning: The embedded fingerprint can be extracted after

the model is fine-tuned

DeepMarks performance (cont’d)

* DeepMarks Performance:

o Collusion resilience: The maximal number of detectable colluders (which is 5
as shown below) is consistent with the theoretical value given by ACC

190 ' ' —e— MNIST-CNN 2 ' ' " [—e—MNIST-CNN
» Sl j
90 —&— CIFAR10-WRN || CIFAR10-WRN
20 f

80 f
2 <
(R 1
3 § 15+
c 60f E
< S
S 50+ S
g " <qot
3 2
8 40; :“f

30 51

20t

10 4 ! d . - o 1 | L .

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Number of colluders Number of colluders

Machine Learning on Encrypted Data

Cryptographically secure and on embedded devices...

Cryptographic tools

* Garbled Circuits (GC): a generic Secure Function Evaluation (SFE) protocol that enables two
parties to evaluate an arbitrary function on the private data in constant number of interactions.

* Goldreich-Micali-Wigderson (GMW): an SFE protocol that requires one round of interaction
between two parties per layer of AND gates. Requires lower data transfer compared to GC.

* Secret Sharing (SS): a method to distribute a share among several untrusted parties, e.g.,
additive secret sharing and Shamir’s secret sharing.

* Homomorphic Encryption (HE): a cryptographic encryption scheme that allows computation on
encrypted form of data.

Private training frameworks

» Shokri and Shmatikov!!): a method for collaborative deep learning that provides differential
privacy. Users download the model, update the model using their own training data and upload
it to the cloud. To provide privacy, users update DL model only for a subset of parameters and
add specific noise to the updates. Broken by Hitaj et al.!?!

» Google'®: proposed a secure aggregation of high-dimensional vectors held by different users.
The method is based on Shamir’s secret sharing and is robust against users dropping in the

middle of the protocol.

» SecureML: a system for privacy-preserving machine learning in general, and neural networks
in particular. The system is based on HE, GC, and SS protocols. Data owners secret share their
data with two non-colluding servers which privately train the neural network.

[1] Shokri, Reza, and Vitaly Shmatikov. "Privacy-preserving deep learning." In CCS, 2015.
[2] Hitaj, Briland, Giuseppe Ateniese, and Fernando Perez-Cruz. "Deep models under the GAN: information leakage from collaborative deep learning." In CCS, 2017.

[3] Bonawitz, Keith, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. "Practical secure

aggregation for privacy-preserving machine learning." In CCS, 2017.
[4] Mohassel, Payman, and Yupeng Zhang. "SecureML: A system for scalable privacy-preserving machine learning." In S&P, 2017.

Private inference frameworks

Prediction Timing (s) Communication (MB)
_ Ac?;r)a d Deep Neural Network Architecture
Offline Online Total Offline Online Total

CryptoNets - 297.5 297.5 - 372.2 372.2 98.95 Conv - Sgr Act - MeanP - Sqr Act - FC
SecureML 4.7 0.18 4.88 - - - 93.1
FC-Sqr Act - FC - Sgr Act - FC
MiniONN (w/ Sqr Act.) 0.90 0.14 1.04 3.8 12 15.8 97.6
MiniONN (w/ Relu & Pooling) 3.58 5.74 9.32 20.9 636.6 657.5 99 Conv - Relu - MaxP - ReLu - MaxP - FC - ReLu- FC
DeepSecure - 9.67 9.67 - 791 791 99
DeepSecure (+ Preprocessing) - 1.08 1.08 - 88.2 88.2 99 Conv-Relu-FC-RelLu-FC
Chameleon 1.34 1.36 2.70 7.8 51 12.9 99

Attacks on Neural Networks

D Attacker Has Original '-. Client Server -.
Training Data (Adversary)
FeEmmooom--- .- - L]
D Attacker's Goal | . 1 1
Downloading [ﬂ . f 1
i Model Parameters o 1 1
D Attacker Gets Client folx)) 74 L
(Adversary) 1 <
. ~0 L ' Trainin
. 4 Secure Computation Sample § é | class folx) - : g
of Class s S| [Laver :
(o]] :

X Query

Model Inversion Attack
O Model Parameters

fo (%) Model Prediction

Client Server
(Adversary) '-.
r

Member? Training Data

YES /NO
Is X 1 here?

GAN-based Attack
Membership Inference Attack

Fredrikson et al. "Model inversion attacks that exploit confidence information and basic countermeasures.” In CCS’15.
Tramer et al. "Stealing Machine Learning Models via Prediction APIs." In USENIX Security’16.

Hitaj et al. "Deep models under the GAN: information leakage from collaborative deep learning." In CCS’17.

Shokri et al. "Membership inference attacks against machine learning models." In S&P’17.

DeepSecure

Public
Projection Matrix

<
-§

-|
|
|
|
|
|
|
-

I

I

| Pre-processing
| Steps
|

|

|
|
| .
| : Public Condense
GC Operation : : DL Architecture I_TJ
Steps | . GC Netlist Q Data & Neural
|[i] off-1ine Steps | ° |Generation /'o\\:// S PreNe;r;Zgls(in
'@ online Steps | . Y g
e e e smiies o | .
| _P;va_te_ F—— Dara .Garbling «— — — — -‘ —————— Evaluating <—|r Private _‘I—
| User Input | Pre-processing Dita Trafister and DL RINETEns
‘ Oblivious Transfer (OT) Primary DL
[Pt ey - . Architecture
| Private | Merging
L DL Inference R Results

Client Side Server Side

DeepSecure preprocessing

Minimize (Tcomm) s-t.. ||A—DCl|F < €l|AllF
D, DLyuyarm

lopt
0

.Sﬂ . 100]SO 200
Dictionary Size |

Data Transformation

Vo(Ai) =

ID(D'D) ' D'A;—A; I,

Al

Dictionary
Expansion?

]

fparam)

DL Network

i e
....
P B
- 3 — - —— -
ilo RS B Jsie i S| £
" -

.5 .
S10%F /
) 7]
&t
- |
SIS |
© 107 ¢ === DeepSecure w/o Pre-p
§. | = DeepSecure w/ Pre-p
< == CryptoNet

10°f

288 2590 8192
2000 4000 6000 8000 10000

Number of Samples

Framework Comm. Comp.(s) Execution(s) Improvement
DeepSecure without 791MB 1.98 9.67 58.96 X
pre-processing

DeepSecure with 88.2MB 0.22 1.08 527.88X
pre-processing

CryptoNets 74KB 570.11 570.11 -

Chameleon

HO OKOR
Y HRHOKOOKO
HFOHOOFOO
“OEHEQHOOH
O+ 0.0 H O+ O
00 QR QK R
ool NeNel NN, Ne)
e e NN e N e
oorQOROR
+ QR 0,000 H
OHOFRHEQH
B QKO RO
ORHOFROOrO
4= 00,04 0
+OHO0OO0OHOO
OHOOKH ORR
OHOHOOKOHK

/—1.02 (0.38

8.43 2.32
9.24 -5.97
—4.38 % 5.35
—9.65 2.33
3.55 —6.87

\ 7.58 \ 5.84
4.51 2.47

= —1.02x0.38 + --- + 4.51x2.47

STP-aided Mixed-Protocol Optimized VDP protocol on Signed Proof-of-Concept Implementation,
Framework for SFE Fixed-Point Numbers (SFN) Evaluation on CNNs (+ SVMs)

>300x less communication VDP pre-computation at communi- >100x over Microsoft CryptoNets,
for pre-computation cation cost of 2 multiplications > 4x over MiniONN [LJLAI7]

Chameleon protocol
(®)
(A

Pre-computation Phase Online Phase
N
N\ STP N TLS
TLS - TLS P, - P,
and ' GC, GMW, A-SS
Py Generation Py Exacubion

arm
TRUSTZONE

SGX

Convolutional Neural Networks (CNNs)

Input Image 28 x 28

Server Inputs l *
------------- _ FC weights
Client Input Kernels/‘ ! .—ReLu(xJ
3 o S S . FC weights Client Output
"""" B T i
e 2 /
3 \\,.rREShaPe—b —ReLu—p» arg max— Output Label
4 — [|
5 Vector of Size 1()
\ S ReLu(x)

Vector of Size 100

\. .—ReLu(xi)

Five Images of Size 14 x 14 Vector of Size 930

Chameleon performance

Run-Time (in seconds) Communication (in megabytes)
300 | 5. : B 1800
100 | :
. 188.8x * =%
10| :
50 | \ 47.7X
25 2. 3x \A - 35 4x |
= 1100
L iy T P
Microsoft DeepSecure MiniONN EzPC Chameleon Microsoft DeepSecure MiniONN EzPC Chameleon
CryptoNets [RRK18] [LILA17] [CGR+17] (This work) CryptoNets [RRK18] [LILA17] [CGR+17] (This work)

Summary and outlook

e Automation revolution and ML
ML is increasingly applied on embedded devices
e Several risks associated, e.g.,
o Adversarial ML
o |P theft
O Privacy concerns due to edge learning and sharing and cloud
e Some recent MICS solutions
o DeepFence, DeepMarks, DeepSigns, and DeepSecure+
e Several standing challenges and opportunities remain...

Safe embedded ML technologies in UCSD/MICS

DeepFence DeepMarks DeepSigns

The first comprehensive defense | The first unremovable DL watermarks The first unremovable DL fingerprints

Against adversarial DL on ES Disgonal

Line

N>
X

\/
i
f;’

WX

\/
W
i

N
;‘:

()

N\

DeeplPTrust DeepSecure & Chameleon Secure Federated ML
The first hybrid trusted F)Iatform The most efficient DL on encrypted data Efficient secure distribued&federated ML
& DL for IP protection

Private Key can erator's
)

8.)
&?- Uploaded Encrypted Data .
— " —

A Intermediat
3 ’ =0 " et
a, 3 Encrypted Result =P \
B3 \\
- N eeeees - Transt d Solution
a? A kg el I
< Cloud Client

L)
Ax=b

Customer’s Private
Docker Container

Ot o ey arcpte,sveninsic e Data Owners Cloud Server

Thank you!

Farinaz Koushanfar

farinaz@ucsd.edu

