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Machine learning on embedded devices



Example: Embedded vision applications



Reliability of ML on embedded devices

• Reliability of AI systems is one of the major obstacles for the wide-scale adoption 
of  emerging learning algorithms in sensitive autonomous systems such as 
unmanned vehicles and drones

• Performance is the most widely pursued challenge now: yet to be solved!

• Some standing security challenges
• Adversarial examples
• IP vulnerabilities
• Trusted execution
• Privacy

• Anonymity

• Inference on encrypted data



Safe embedded ML technologies in UCSD/MICS

DeepMarksDeepFence DeepSigns

DeepIPTrust DeepSecure & Chameleon Secure Federated ML

The first comprehensive defense
Against adversarial DL on ES

The first unremovable DL watermarks The first unremovable DL fingerprints

The first hybrid trusted platform 
& DL for IP protection

The most efficient DL on encrypted data Efficient secure distribued&federated  ML
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DeepFense
The First accelerated and automated defense against adversarial learning



Adversarial learning

 Reliability is one of the major obstacles for the wide-scale adoption of emerging 
Deep Learning (DL) models in sensitive autonomous systems such as unmanned 
vehicles and drones 

 Consider an autonomous car which leverages a DL model to analyze front scene



DeepFense contribution

 Unsupervised model assurance as well as defending against the adversaries

 Model assurance by checkpointing DL models at intermediate points

◦ parallel models with various accuracy & robustness

◦ Hardware-acceleration for just-in-time response

 Proof-of-concept evaluation on various benchmarks and attacks

 Automated accompanying API



DeepFense framework

With the proposed defense methodology:

• The victim model is not altered

• The accuracy is not dropped

• The adversary would require to deceive all defenders to success

 Robustness and model accuracy are distinct 
objectives with a trade-off 

 We checkpoint the intermediate variables 
to find atypical samples 

Checkpoint Checkpoint
Checkpoint
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Training latent defender
  

[1] Bita Rouhani, Mohammad Samragh, Mojan Javeheripi, Tara Javidi, and Farinaz Koushanfar. “DeepFense: Online Accelerated Defense Against Adversarial Deep Learning”, ICCAD 2018
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Statistical testing for detection

• Adversarial and legitimate samples differ in statistical properties
• Even in the victim model (left), adversarial samples deviate from the PDF of legitimate samples
• Our unsupervised defense mechanism (right) characterize the underlying space by data 

realignment and separation of the PDFs corresponding to adversarial and legitimate samples 



Training Input defenders

 Training each input redundancy module involves two main steps:

Dictionary learning 

◦ Learning  separate dictionaries for each class of data

Characterizing typical PSNR in each category 

◦ Profiling PSNR of legitimate samples in each class
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[1] Bita Rouhani, Mohammad Samragh, Mojan Javeheripi, Tara Javidi, and Farinaz Koushanfar. “DeepFense: Online Accelerated Defense Against Adversarial Deep Learning”, ICCAD 2018



Input and latent defenders
 The impact of perturbation level on the pertinent adversarial detection rate for three different security 
parameters (cut-off thresholds) on MNIST benchmark 

The use of input dictionaries facilitate automated detection of adversarial samples with relatively high 
perturbation (e.g., ε > 0.25) while the latent defender module is sufficient to distinguish malicious 
samples even with very small perturbations



Hardware acceleration for DeepFence

Checkpoint 1 Checkpoint 3
Checkpoint 2

• Reducing runtime overhead by parallel execution of defender modules on FPGA 



Hardware/Software co-optimized 
acceleration(e.g.,[1,2])

[1] Mohammad Samragh, Mohsen Imani, Farinaz Koushanfar, Tajana Rosing "LookNN: Neural network with no multiplication." DATE 2017
[2] Mohammad Samragh, Mohammad Ghasemzadeh, Farinaz Koushanfar, “ Customizing neural networks for efficient FPGA implementation” FCCM 2017



Automation and API

 We provide automated APIs for training input & latent defender modules 
◦ Our API takes the maximum number of defender modules as a constraint along with the victim 

model and training data to generate the corresponding defenders

 Each trained defender is then mapped to a hardware accelerator for efficient execution 
of defender modules and minimize the corresponding run-time overhead

[1] B. Rouhani, M. Javaheripi, M. Samragh.  T. Javidi, F. Koushanfar "DeepFence: Characterizing and Defending Adversarial Samples." ICCAD’18



Practical design experiences

DeepFense



Attack scenarios
  

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples” 
[2] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The limitations of deep 
learning in adversarial settings”
[3] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accurate method to 
fool deep neural networks”
[4] N. Carlini, D. Wagner, “Towards evaluating the robustness of neural networks”



Black-box attacks

 Area Under Curve (AUC) score of MRR methodology against different attack scenarios for 
MNIST, CIFAR10, and ImageNet benchmark

 In this experiment, the attacker knows everything about the DL model but is not aware 
of the defense mechanism



Adaptive white-box attack

 Our MRR methodology is significantly more robust against prior-art works in face of 
adaptive white-box attacks 

 In this experiment, we have considered Carlini and Wagner adaptive attack assuming 
that the attacker knows everything about the DL model and defense mechanism

[1] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2017
[2] Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. Ef- ficient defenses against adversarial attacks. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. ACM, 2017.
[3] Shiwei Shen, Guoqing Jin, Ke Gao, and Yongdong Zhang. Ape-gan: Adversarial perturbation elimination with gan. ICLR, 2017
[4] Nicholas Carlini and David Wagner. “Magnet and efficient defenses against adversarial attacks are not robust to adversarial examples.” arXiv preprint arXiv:1711.08478, 2017.



DeepSigns and DeepMarks
The First Deep Learning IP Protection for both black-box and white-box settings +

acceleration and automation for embedded applications 



Motivation for ML IP protection
• Training a high-performance Deep Neural Network (DNN) is expensive 
since the process requires:
o Massive amount of proprietary training data

o  Significant computational resources 

• Pre-trained DNN is considered as the Intellectual Property (IP) of the 
model builder and needs to be protected 

• Concern: how to prove the ownership of a DNN after it is deployed? 



Challenges for watermarking DL
AlexNet (white-box)

Query image

Image label

User

DL Service 
(black-box)

• Various application scenarios:
o  White-box: DNN is shared with the public 

and model internal details are accessible 

o  Black-box: DNN is deployed in a remote 
service and only the output is accessible

• State-of-the-art solutions: 
o Weights watermarking [1]: only applicable 

in the white-box setting

o  Zero-bit watermarking [2,3]: embed a 
zero-bit watermark (WM) in black-box 

[1] Y. Uchida, et al. ‘Embedding watermarks into deep neural networks’, ICMR 2017
[2] E. L. Merrer et al. ‘Adversarial frontier stitching for remote neural network watermarking’ arXiv preprint 2017
[3] Y Adi, et al. ‘Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring’, USENIX 2018



DeepSigns’ Contribution
• Suggesting the first end-to-end watermarking framework for systematic 
IP protection in both white-box and black-box setting

• Yielding high detection rate and low false alarm rate while preserving 
the prediction accuracy

• Robust against a variety of model modification attacks and watermark 
overwriting attacks 

• Devising an Application Programming Interface (API) to automate the 
adoption of DeepSigns to various DL models, including convolutional, 
residual, and fully-connected networks. 



DeepSigns methodology
  



DeepSigns methodology (Cont’d)
  



Automation of DeepSigns
• DeepSigns provides wrapper that can be readily integrated with popular 
DL frameworks, including TensorFlow, PyTorch, Theano



DeepSigns performance
• DeepSigns Performance: 
o  Functionality preserving: The watermarked model achieves the same level of 

accuracy compared to the  baseline model  



DeepSigns performance (cont’d)
• DeepSigns Performance: 
o  Robustness against pruning attack: Tolerate up to 90%, 99%, and 99.5% 

parameter pruning on MNIST, CIFAR-10, and ImageNet dataset, respectively

o  Robustness against fine-tuning: The embedded WM can be detected after the 
marked model is fine-tuned 

o  Robustness against overwriting: The original WM remains detectable after the 
attacker embeds a new WM using the same approach 

o Capacity: Allows up to 64 bits and 256 bits WM embedding on MNIST and 
CIFAR10 dataset

o Security: DeepSigns watermarking method leaves no tangible footprint in the 
model, thus the attacker cannot detect the presence of the WM 



Motivation for DL fingerprinting
• Digital watermarking technique cannot distinguish different users who 
are using the same IP provided by the model owner

• If IP infringement is discovered,  how to determine which user has 
misused the IP? – Fingerprinting! 

• Digital Fingerprinting of DNNs: make each distributed DNN unique and 
distinguishable 



Challenges for fingerprinting
• There are no prior works on digital fingerprinting of DNNs

• Existing DNN watermarking frameworks only consider the singer-user 
scenario and provide ownership proof for IP protection

• How to provide a robust, collusion-secure solution that supports both 
IP protection and Digital Right Management (DRM) for DNNs in a 
multi-user setting? 



DeepMarks’ contribution
• Proposing the first end-to-end fingerprinting methodology for systematic 
IP protection and DRM in the DL domain 

• Enabling unique identification of users 

• Robust against a variety of model transformation attacks and fingerprint 
collusion attack 

• Devising an (API) to automate the adoption of DeepMarks fingerprinting 
technique to various DNN architectures 



DeepMarks methodology
  

[4] Y. Yu et al, “Group-oriented anti-collusion fingerprint based on BIBD code’, EBISS 2010



DeepMarks methodology
  



DeepMarks automation
• DeepMarks provides wrapper 
that is compatible with existing 
DL frameworks (e.g. TensorFlow, 
PyTorch, Theano)

• The wrapper supports two 
utilizations:
o  User identification

o  Collusion detection



DeepMarks performance evaluation
• DeepMarks Performance: 
o  Functionality preserving: The fingerprinted model achieves a comparable 

accuracy as baseline model  

o  Robust against parameter pruning: Tolerate up to 95% and 99% parameter 
pruning on MNIST and CIFAR10 benchmarks 

o  Robust against fine-tuning: The embedded fingerprint can be extracted after 
the model is fine-tuned 



DeepMarks performance (cont’d)
• DeepMarks Performance: 
o  Collusion resilience: The maximal number of detectable colluders (which is 5 

as shown below) is consistent with the theoretical value given by ACC



Machine Learning on Encrypted Data
Cryptographically secure and on embedded devices...



Cryptographic tools
• Garbled Circuits (GC): a generic Secure Function Evaluation (SFE) protocol that enables two 
parties to evaluate an arbitrary function on the private data in constant number of interactions. 

• Goldreich-Micali-Wigderson (GMW): an SFE protocol that requires one round of interaction 
between two parties per layer of AND gates. Requires lower data transfer compared to GC.

• Secret Sharing (SS): a method to distribute a share among several untrusted parties, e.g., 
additive secret sharing and Shamir’s secret sharing. 

• Homomorphic Encryption (HE): a cryptographic encryption scheme that allows computation on 
encrypted form of data. 



Private training frameworks 
• Shokri and Shmatikov[1]: a method for collaborative deep learning that provides differential 
privacy. Users download the model, update the model using their own training data and upload 
it to the cloud. To provide privacy, users update DL model only for a subset of parameters and 
add specific noise to the updates.               Broken by Hitaj et al.[2] 

• Google[3]: proposed a secure aggregation of high-dimensional vectors held by different users. 
The method is based on Shamir’s secret sharing and is robust against users dropping in the 
middle of the protocol. 

• SecureML[4]: a system for privacy-preserving machine learning in general, and neural networks 
in particular. The system is based on HE, GC, and SS protocols. Data owners secret share their 
data with two non-colluding servers which privately train the neural network. 

[1] Shokri, Reza, and Vitaly Shmatikov. "Privacy-preserving deep learning." In CCS, 2015.
[2] Hitaj, Briland, Giuseppe Ateniese, and Fernando Perez-Cruz. "Deep models under the GAN: information leakage from collaborative deep learning." In CCS, 2017.
[3] Bonawitz, Keith, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. "Practical secure 
aggregation for privacy-preserving machine learning." In CCS, 2017.
[4] Mohassel, Payman, and Yupeng Zhang. "SecureML: A system for scalable privacy-preserving machine learning." In S&P, 2017.



Private inference frameworks



Attacks on Neural Networks

Fredrikson et al. "Model inversion attacks that exploit confidence information and basic countermeasures.“ In CCS’15.
Tramèr et al. "Stealing Machine Learning Models via Prediction APIs." In USENIX Security’16.
Hitaj et al. "Deep models under the GAN: information leakage from collaborative deep learning." In CCS’17.
Shokri et al. "Membership inference attacks against machine learning models." In S&P’17.



DeepSecure



DeepSecure preprocessing 



DeepSecure performance



Chameleon

STP-aided Mixed-Protocol 
Framework for SFE

>300x less communication
for pre-computation

Proof-of-Concept Implementation,  
Evaluation on CNNs (+ SVMs)

>100x over Microsoft CryptoNets,
> 4x over MiniONN [LJLA17]

Optimized VDP protocol on Signed 
Fixed-Point Numbers (SFN)

VDP pre-computation at communi-
cation cost of 2 multiplications

 



Chameleon protocol



Convolutional Neural Networks (CNNs)
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Chameleon performance



Summary and outlook
● Automation revolution and ML
● ML is increasingly applied on embedded devices
● Several risks associated, e.g.,

○ Adversarial ML
○ IP theft
○ Privacy concerns due to edge learning and sharing and cloud

● Some recent MICS solutions
○ DeepFence, DeepMarks, DeepSigns, and DeepSecure+

● Several standing challenges and opportunities remain...



Safe embedded ML technologies in UCSD/MICS

DeepMarksDeepFence DeepSigns

DeepIPTrust DeepSecure & Chameleon Secure Federated ML

The first comprehensive defense
Against adversarial DL on ES

The first unremovable DL watermarks The first unremovable DL fingerprints

The first hybrid trusted platform 
& DL for IP protection

The most efficient DL on encrypted data Efficient secure distribued&federated  ML

W W
Check CheckCheck



Thank you!
Farinaz Koushanfar

farinaz@ucsd.edu


