

Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

PONISING THE NEW ENGINEER TO TRANSFORM THE FUTURE

COMPUTER AND INFORMATION SCIENCE AND ENGINEERING

Omnidirectional Cinemagraphs for Safety Training

Presented by: Eakta Jain

Co-authors: Brendan John, CJ Taylor, Sri Kalyanaraman

Motivation

Safety critical to workplace

- Occupational Health and Safety Act 1970
- Significant resources spent on training employees and inspectors
- Problem: Hazards training puts trainee at risk

Motivating Application

Construction Safety: Training worker to identify hazards

Objects on Ground Level

- Working near vehicle without traffic barricades
- · Highly visible reflective vest
- Use extreme caution when approaching heavy equipment
- Clearly marked traffic work zones with signage warnings
- Use physical barriers to protect workers from vehicle traffic
- · Audible back-up alarms
- Spotter or flagger to direct operator/traffic if restricted visibility
- · Adequate clearance behind vehicles

Recognize Any Hazard(s)?

Motivating Application

Construction Safety: Training worker to identify hazards

Objects on Ground Level

- Working near vehicle without traffic barricades
- · Highly visible reflective vest
- Use extreme caution when approaching heavy equipment
- Clearly marked traffic work zones with signage warnings
- Use physical barriers to protect workers from vehicle traffic
- · Audible back-up alarms
- Spotter or flagger to direct operator/traffic if restricted visibility
- Adequate clearance behind vehicles

COMPUTER AND INFORMATION SCIENCE AND ENGINEERING

Motivating Application

Virtual reality for construction safety: Keep trainee safe, immersed, engaged

COMPUTER AND INFORMATION SCIENCE AND ENGINEERING

Motivating Application

Omnidirectional cinemagraphs provide photorealistic detail, attention guidance

Case Study: In Home Fire Hazards

Motion as a Cue for Attention Guidance

Case Study: In Home Fire Hazards

Motion as a Cue for Attention Guidance

Case Study: In Home Fire Hazards

Motion as a Cue for Attention Guidance

- Between subjects experiment:
 - Condition Dynamic (cinemagraph) / Condition Static (one frame of video)
 - Participant asked to identify all the fire hazards in the scene
 - Survey items related to presence, immersion, cognitive absorption, attitude/preference¹
 - 10 participants
 - Oculus DK2 with integrated eye tracker

¹ [Kalyanaraman & Sundar 2006, Vorderer et al. 2015, Green & Brock 2000, Kim & Biocca 1997, Agarwal & Karahanna 2000]

COMPUTER AND INFORMATION SCIENCE AND ENGINEERING

Case Study: Findings

Participants identified more hazards in Condition Dynamic

Participants rate Condition Dynamic higher on presence, absorption and attitudes

COMPUTER AND INFORMATION SCIENCE AND ENGINEERING

Case Study: Findings

Participants fixated on candle and paper towel faster in Condition Dynamic

REWEINE THE NEW ENGINEER TO TRANSFORM THE FUTURE.

COMPUTER AND INFORMATION SCIENCE AND ENGINEERING

Takeaways

Omnidirectional cinemagraphs: Easy to record, hard to edit

Domain experts need to author

Thank you

Both training and safety are about attention management

UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE