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A Modern Mobile SoC

Increasing diversity in & across SoCs
& supercomputers, data centers, …

Need common interface (abstractions): HW-independent SW development, “object code” portability
Data movement critical: Memory structures, communication, consistency, synchronization
Approximation: Application-driven solution quality trade off to increase efficiency



Interfaces: Back to the Future

April 7, 1964: IBM announced the 360
• Family of machines w/ common abstraction/interface/ISA 

– Programmer freedom: no reprogramming 
– Designer freedom: implementation creativity

Not unique
• CPUs : ISAs; Internet : IP; GPUs : CUDA; Databases : SQL; …



Current Interface Levels

CPUs + Vector 
SIMD Units

…

GPU DSP
Domain-specific 

Accelerators

FPGA

"Hardware" ISA

Virtual ISA

Language-neutral Compiler IR

Language-level Compiler IR

General-purpose prog. language

Domain-specific prog. language

IBM AS/400,
Transmeta, PTX, HSAIL,
Codesigned Virtual Machines

SPIR, HPVM

Delite IR, HPVM, OSCAR, Polly  

Delite DSL IR, DLVM, TVM, … 

CUDA, OpenCL, OpenAcc,
OpenMP, Python, Julia

TensorFlow, MXNet, Halide, 
…

Hardware innovation

Object-code portability

Compiler investment

Language innovation

App. performance

App. productivity

Source: Vikram Adve, HPVM project,
https://publish.illinois.edu/hpvm-project/



Which Interface Levels Can Be Uniform?

CPUs + Vector 
SIMD Units

…

GPU DSP
Domain-specific 

Accelerators

FPGA

"Hardware" ISA

Virtual ISA

Language-neutral Compiler IR

Language-level Compiler IR

General-purpose prog. language

Domain-specific prog. language Too diverse
to define a 

uniform
interface

Also too 
diverse …

Much more
uniform

Source: Vikram Adve, HPVM project,
https://publish.illinois.edu/hpvm-project/



One Example

HPVM: Heterogeneous Parallel Virtual Machine [PPoPP’18]

Parallel program representation for heterogeneous parallel hardware
• Virtual ISA: portable virtual object code, simpler translators
• Compiler IR: optimizations, map diverse parallel languages
• Runtime Representation for flexible scheduling: mapping, load balancing

Generalization of LLVM IR for parallel heterogeneous hardware
PPoPP’18: Results on GPU (Nvidia), Vector ISA (AVX), Multicore (Intel Xeon)
Ongoing: FPGA, novel domain-specific SoCs



Dataflow Graph 
with side effects

Vector

VA = load <L4 x float>* A
VB = load <L4 x float>* B

…
VC = fmul <L4 x float> VA, VB

Hierarchical

or

HPVM Abstractions



Dataflow Graph 
with side effects

Vector

VA = load <L4 x float>* A
VB = load <L4 x float>* B

…
VC = fmul <L4 x float> VA, VB

Hierarchical

or

HPVM Abstractions

• Task, data, vector parallelism
• Streams, pipelines
• Shared memory
• High-level optimizations
• FPGAs (more custom hw?)

N different parallelism models single unified model



Data

Data movement critical to efficiency 
• Memory structures
• Communication
• Coherence
• Consistency
• Synchronization

Uniform communication interface for hardware
Abstract to software interface
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inter-chip  
IF

Application-Customized Accelerator Communication Arch
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IF

inter-chip  
IF

Problem: Design + Integrate               
Multiple accelerator memory systems + Communication

Challenges:
‒Friction between different app-specific specializations
‒ Inefficiencies due to deep memory hierarchy
‒Multiple scales: on-chip to cloud

New accelerator communication architecture
‒Coherent, global address space 
‒App-specialized coherence, comm, storage, soln quality

One example next focused on coherence: Spandex [ISCA’18]
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Typical CPU workloads: 
fine-grain synch, latency sensitive

Heterogeneous devices have diverse memory demands



Spatial
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Temporal
locality

Throughput 
Sensitivity

Latency 
Sensitivity

Fine-grain
Synch

Typical GPU workloads: 
spatial locality, throughput sensitive

Heterogeneous devices have diverse memory demands



MESI coherence targets CPU workloads

Protocol properties MESI GPU coherence DeNovo

Granularity Line Reads: line
writes: word

Reads: flexible
Writes: word

Stale data 
invalidation Writer-invalidate Self-invalidate Self-invalidate

Write propagation Ownership Write-through Write-back

MESI
GPU 
coh. DeNovo

Good for:
GPUCPU CPU or GPU

GPU Coherence
 Fine-grain writes
 No false sharing
 Reduced spatial locality

 Self invalidation 
 Simple, scalable
 Synch limits read reuse

 Write-through caches
 Simple, low overhead
 Synch limits write reuse

MESI
 Coarse-grain state 
 Spatial locality
 False sharing

 Writer-initiated invalidation 
 Temporal locality for reads
 Overheads limit throughput, scalability

 Ownership-based updates 
 Temporal locality for writes
 Indirection if low locality



GPU coherence fits GPU workloads

Protocol properties MESI GPU coherence DeNovo

Granularity Line Reads: line
writes: word

Reads: flexible
Writes: word

Stale data 
invalidation Writer-invalidate Self-invalidate Self-invalidate

Write propagation Ownership Write-through Write-back

MESI
GPU 
coh. DeNovo

Good for:
GPUCPU CPU or GPU
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GPU Coherence
 Fine-grain writes
 No false sharing
 Reduced spatial locality

 Self invalidation 
 Simple, scalable
 Synch limits read reuse

 Write-through caches
 Simple, low overhead
 Synch limits write reuse



DeNovo is good fit for CPU and GPU

Protocol properties MESI GPU coherence DeNovo

Granularity Line Reads: line
writes: word

Reads: flexible
Writes: word

Stale data 
invalidation Writer-invalidate Self-invalidate Self-invalidate

Write propagation Ownership Write-through Ownership

MESI
GPU 
coh. DeNovo

Good for:
GPUCPU CPU or GPU



Integrating Diverse Coherence Strategies

Existing Solutions: MESI-based LLC
 Accelerator Requests forced to use MESI
 Added latency for inter-device communication
 MESI is complex: extensions are difficult

CPU GPU FPGA/
ASIC ?

MESI LLC

MESI/GPU coh.
Hybrid L2

MESI L1

GPU 
coh. L1

MESI L1

GPU

GPU 
coh. L1

CPU GPU FPGA/
ASIC ?

MESI L1 GPU coh. L1 DeNovo L1

Spandex LLC

Spandex: DeNovo-based interface [ISCA’18]

 Supports write-through and write-back
 Supports self-invalidate and writer-invalidate
 Supports requests of variable granularity
 Directly interfaces MESI, GPU coherence, hybrid 

(e.g. DeNovo) caches



Example: Collaborative Graph Applications

Vertex-centric algorithms: distribute vertices among CPU, GPU threads
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Application Access Pattern Important Dimension Results

Pull-based 
PageRank

Read neighbor vertices,
Update local vertex

Flat LLC avoids 
indirection for read 

misses

Spandex LLC ⇒
37% better exec. time
9% better NW traffic

Push-based 
Betweenness 

Centrality

Read local vertex,
Update (RMW) neighbor vertices

Ownership-based write 
propagation exploits 

locality in updates

DeNovo at GPU ⇒
18% better exec. time
61% better NW traffic



Looking Forward…

HPVM + DRF Consistency + ???

Synchronization 
locality

Producer/consumer 
relationships

Data locality, 
visibility

Coarse-grain 
operations

Software 
Innovations

Hardware 
Innovations

hLRC adaptive 
laziness

HBM cachesSpandex 
dynamic caches

Hardware 
queues

Coherent 
scratchpads
Stash, ISCA’15

+

NVRAM

+



Approximation

How to express quality of solution from the application to the hardware?

Integrate approximation (quality) into the interface



Summary

• Interfaces

• Data

• Approximation
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