
Programming Systems for Specialized Architectures

Interface, Data, Approximation

Sarita Adve

With: Vikram Adve, Johnathan Alsop, Maria Kotsifakou, Sasa Misailovic,
Matt Sinclair, Prakalp Srivastava

University of Illinois at Urbana-Champaign
sadve@illinois.edu

Sponsors: NSF, C-FAR, ADA (JUMP center by SRC, DARPA)

Main Memory

Interconnect

Modem

GPS

DSP DSP

GPU

A/V Hardware
Accelerators

DSP Multi-
media

CPU

L1
Cache

L2 Cache

CPU

L1
Cache

VectorVector

Different parallelism models

Incompatible memory systems Different hardware ISAs

A Modern Mobile SoC

Increasing diversity in & across SoCs
& supercomputers, data centers, …

Need common interface (abstractions): HW-independent SW development, “object code” portability
Data movement critical: Memory structures, communication, consistency, synchronization
Approximation: Application-driven solution quality trade off to increase efficiency

Interfaces: Back to the Future

April 7, 1964: IBM announced the 360
• Family of machines w/ common abstraction/interface/ISA

– Programmer freedom: no reprogramming
– Designer freedom: implementation creativity

Not unique
• CPUs : ISAs; Internet : IP; GPUs : CUDA; Databases : SQL; …

Current Interface Levels

CPUs + Vector
SIMD Units

…

GPU DSP
Domain-specific

Accelerators

FPGA

"Hardware" ISA

Virtual ISA

Language-neutral Compiler IR

Language-level Compiler IR

General-purpose prog. language

Domain-specific prog. language

IBM AS/400,
Transmeta, PTX, HSAIL,
Codesigned Virtual Machines

SPIR, HPVM

Delite IR, HPVM, OSCAR, Polly

Delite DSL IR, DLVM, TVM, …

CUDA, OpenCL, OpenAcc,
OpenMP, Python, Julia

TensorFlow, MXNet, Halide,
…

Hardware innovation

Object-code portability

Compiler investment

Language innovation

App. performance

App. productivity

Source: Vikram Adve, HPVM project,
https://publish.illinois.edu/hpvm-project/

Which Interface Levels Can Be Uniform?

CPUs + Vector
SIMD Units

…

GPU DSP
Domain-specific

Accelerators

FPGA

"Hardware" ISA

Virtual ISA

Language-neutral Compiler IR

Language-level Compiler IR

General-purpose prog. language

Domain-specific prog. language Too diverse
to define a

uniform
interface

Also too
diverse …

Much more
uniform

Source: Vikram Adve, HPVM project,
https://publish.illinois.edu/hpvm-project/

One Example

HPVM: Heterogeneous Parallel Virtual Machine [PPoPP’18]

Parallel program representation for heterogeneous parallel hardware
• Virtual ISA: portable virtual object code, simpler translators
• Compiler IR: optimizations, map diverse parallel languages
• Runtime Representation for flexible scheduling: mapping, load balancing

Generalization of LLVM IR for parallel heterogeneous hardware
PPoPP’18: Results on GPU (Nvidia), Vector ISA (AVX), Multicore (Intel Xeon)
Ongoing: FPGA, novel domain-specific SoCs

Dataflow Graph
with side effects

Vector

VA = load <L4 x float>* A
VB = load <L4 x float>* B

…
VC = fmul <L4 x float> VA, VB

Hierarchical

or

HPVM Abstractions

Dataflow Graph
with side effects

Vector

VA = load <L4 x float>* A
VB = load <L4 x float>* B

…
VC = fmul <L4 x float> VA, VB

Hierarchical

or

HPVM Abstractions

• Task, data, vector parallelism
• Streams, pipelines
• Shared memory
• High-level optimizations
• FPGAs (more custom hw?)

N different parallelism models single unified model

Data

Data movement critical to efficiency
• Memory structures
• Communication
• Coherence
• Consistency
• Synchronization

Uniform communication interface for hardware
Abstract to software interface

inter-chip
IF

Accel. 1

IF

IF

Accel. 3

cache

IF

IF

stash

Accel. 2

Accel. 4

coherent FIFO

RDMA

inter-chip
IF

inter-chip
IF

inter-chip
IF

Application-Customized Accelerator Communication Arch

Accel. 1

IF

IF

Accel. 3

cache

IF

IF

stash

Accel. 2

Accel. 4

coherent FIFO

RDMA

inter-chip
IF

inter-chip
IF

Problem: Design + Integrate
Multiple accelerator memory systems + Communication

Challenges:
‒Friction between different app-specific specializations
‒ Inefficiencies due to deep memory hierarchy
‒Multiple scales: on-chip to cloud

New accelerator communication architecture
‒Coherent, global address space
‒App-specialized coherence, comm, storage, soln quality

One example next focused on coherence: Spandex [ISCA’18]

11

Spatial
locality

Temporal
locality

Throughput
Sensitivity

Latency
Sensitivity

Fine-grain
Synch

Heterogeneous devices have diverse memory demands

12

Spatial
locality

Temporal
locality

Throughput
Sensitivity

Latency
Sensitivity

Fine-grain
Synch

Typical CPU workloads:
fine-grain synch, latency sensitive

Heterogeneous devices have diverse memory demands

Spatial
locality

Temporal
locality

Throughput
Sensitivity

Latency
Sensitivity

Fine-grain
Synch

Typical GPU workloads:
spatial locality, throughput sensitive

Heterogeneous devices have diverse memory demands

MESI coherence targets CPU workloads

Protocol properties MESI GPU coherence DeNovo

Granularity Line Reads: line
writes: word

Reads: flexible
Writes: word

Stale data
invalidation Writer-invalidate Self-invalidate Self-invalidate

Write propagation Ownership Write-through Write-back

MESI
GPU
coh. DeNovo

Good for:
GPUCPU CPU or GPU

GPU Coherence
 Fine-grain writes
 No false sharing
 Reduced spatial locality

 Self invalidation
 Simple, scalable
 Synch limits read reuse

 Write-through caches
 Simple, low overhead
 Synch limits write reuse

MESI
 Coarse-grain state
 Spatial locality
 False sharing

 Writer-initiated invalidation
 Temporal locality for reads
 Overheads limit throughput, scalability

 Ownership-based updates
 Temporal locality for writes
 Indirection if low locality

GPU coherence fits GPU workloads

Protocol properties MESI GPU coherence DeNovo

Granularity Line Reads: line
writes: word

Reads: flexible
Writes: word

Stale data
invalidation Writer-invalidate Self-invalidate Self-invalidate

Write propagation Ownership Write-through Write-back

MESI
GPU
coh. DeNovo

Good for:
GPUCPU CPU or GPU

15

GPU Coherence
 Fine-grain writes
 No false sharing
 Reduced spatial locality

 Self invalidation
 Simple, scalable
 Synch limits read reuse

 Write-through caches
 Simple, low overhead
 Synch limits write reuse

DeNovo is good fit for CPU and GPU

Protocol properties MESI GPU coherence DeNovo

Granularity Line Reads: line
writes: word

Reads: flexible
Writes: word

Stale data
invalidation Writer-invalidate Self-invalidate Self-invalidate

Write propagation Ownership Write-through Ownership

MESI
GPU
coh. DeNovo

Good for:
GPUCPU CPU or GPU

Integrating Diverse Coherence Strategies

Existing Solutions: MESI-based LLC
 Accelerator Requests forced to use MESI
 Added latency for inter-device communication
 MESI is complex: extensions are difficult

CPU GPU FPGA/
ASIC ?

MESI LLC

MESI/GPU coh.
Hybrid L2

MESI L1

GPU
coh. L1

MESI L1

GPU

GPU
coh. L1

CPU GPU FPGA/
ASIC ?

MESI L1 GPU coh. L1 DeNovo L1

Spandex LLC

Spandex: DeNovo-based interface [ISCA’18]

 Supports write-through and write-back
 Supports self-invalidate and writer-invalidate
 Supports requests of variable granularity
 Directly interfaces MESI, GPU coherence, hybrid

(e.g. DeNovo) caches

Example: Collaborative Graph Applications

Vertex-centric algorithms: distribute vertices among CPU, GPU threads

18

Application Access Pattern Important Dimension Results

Pull-based
PageRank

Read neighbor vertices,
Update local vertex

Flat LLC avoids
indirection for read

misses

Spandex LLC ⇒
37% better exec. time
9% better NW traffic

Push-based
Betweenness

Centrality

Read local vertex,
Update (RMW) neighbor vertices

Ownership-based write
propagation exploits

locality in updates

DeNovo at GPU ⇒
18% better exec. time
61% better NW traffic

Looking Forward…

HPVM + DRF Consistency + ???

Synchronization
locality

Producer/consumer
relationships

Data locality,
visibility

Coarse-grain
operations

Software
Innovations

Hardware
Innovations

hLRC adaptive
laziness

HBM cachesSpandex
dynamic caches

Hardware
queues

Coherent
scratchpads
Stash, ISCA’15

+

NVRAM

+

Approximation

How to express quality of solution from the application to the hardware?

Integrate approximation (quality) into the interface

Summary

• Interfaces

• Data

• Approximation

	Slide Number 1
	A Modern Mobile SoC
	Slide Number 3
	Current Interface Levels
	Which Interface Levels Can Be Uniform?
	Slide Number 6
	HPVM Abstractions
	HPVM Abstractions
	Slide Number 9
	Application-Customized Accelerator Communication Arch
	Heterogeneous devices have diverse memory demands
	Heterogeneous devices have diverse memory demands
	Slide Number 13
	MESI coherence targets CPU workloads
	GPU coherence fits GPU workloads
	DeNovo is good fit for CPU and GPU
	Integrating Diverse Coherence Strategies
	Example: Collaborative Graph Applications
	Looking Forward…
	Slide Number 20
	Slide Number 21

