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1. Overview 
Algorithmic systems have been used to inform consequential decisions for at least a century. Recidivism prediction dates back to 

the 1920s (Burgess 1928), (Monachesi 1950), (Trainor 2015). Automated credit scoring dates began in the middle of the last century 

(McCorkell 2002), (Trainor 2015), (Lauer 2017), but the last decade has witnessed an acceleration in the adoption of prediction 

algorithms. 

They are deployed to screen job applicants (Cowgill 2018a), (Cappelli, Tambe, and Yakubovich 2019) for the  recommendation of 

products, people, and content, as well as in medicine (diagnostics and decision aids) (Ustun and Rudin 2017), (“MDCalc - Medical 

Calculators, Equations, Scores, and Guidelines” n.d.), criminal justice (Cowgill 2018b), (Megan Stevenson 2018) (setting bail and 

sentencing), facial recognition (Eubanks 2018), (Buolamwini and Gebru 2018), (Raji and Buolamwini 2019), lending and insurance 

(Jeong 2019), and the allocation of public services (Eubanks 2018), (Abebe and Goldner 2018). 

The prominence of algorithmic methods has led to concerns regarding their systematic unfairness in their treatment of those 

whose behavior they are predicting. These concerns have found their way into the popular imagination through news accounts 

(Dastin 2018) and general interest books (O’Neill 2016), (Broussard 2018), (Noble 2018). Even when these algorithms are deployed 

in domains subject to regulation, it appears that existing regulation is poorly equipped to deal with this issue (Sullivan and 

Schweikart 2019). 

The word ‘fairness’ in this context is a placeholder for three related equity concerns. First, such algorithms may systematically 

discriminate against individuals with a common ethnicity, religion, or gender, irrespective of whether the relevant group enjoys 

legal protections. The second is that these algorithms fail to treat people as individuals. Third, who gets to decide how algorithms 

are designed and deployed. These concerns are present when humans, unaided, make predictions. 

So what is new here? Scale for one. These algorithms are being implemented precisely so as to scale up the number of 

instances a human decision maker can handle. Recruiters, for example, can process thousands of resumes in the blink of an eye.  

As a consequence, errors that once might have been idiosyncratic become systematic. Ubiquity, is also novel — success in one 

context justifies usage in other domains. Credit scores, for example, are used in contexts well beyond what their inventors 

originally imagined. Thirdly, accountability must be considered. Who is responsible for an algorithm’s predictions? How might 

one appeal against an algorithm? How does one ask an algorithm to consider additional information beyond what its designers 

already fixed upon? 

The concern for fairness is often set up in competition with a concern for accuracy. The first is seen as difficult to measure and 

hard to pin down, not least because one is concerned with fairness along a variety of dimensions such as income, health, and 

access to opportunity. Measuring accuracy, on the other hand is seen as unambiguous and objective. Nothing could be farther 

from the truth. Decisions based on predictive models suffer from two kinds of errors that frequently move in opposite directions: 

false positives and false negatives. Further, the probability distribution over the two kinds of errors is not fixed but depends on 

the modeling choices of the designer. As a consequence, two different algorithms with identical false positive rates and false 

negative rates can make mistakes on very different sets of individuals with profound welfare consequences. Prediction also 

depends crucially on the availability of data and data can be compromised in many ways — unevenness of coverage, sample bias, 

and noise. Hence, there are no simple and portable takeaways.

Motivated by these considerations the CCC’s Fairness and Accountability Task Force held a visioning workshop on May 22-23, 

2019, that brought together computer science researchers with backgrounds in algorithmic decision making, machine learning, 

and data science with policy makers, legal experts, economists, and business leaders. The workshop discussed methods to 

ensure economic fairness in a data-driven world. Participants were asked to identify and frame what they thought were the most 

pressing issues and to outline some concrete problems. This document is a synthesis of these comments.
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We begin with four broad remarks that are helpful to frame 

one’s thinking. First is an equity principle for evaluating 

outcomes (see Roemer and Trannoy (2016)). Under this 

principle, outcomes such as educational attainment, health 

status, and employability are assumed to be determined 

by factors that are divided into two categories. The first, 

called circumstances, are factors beyond an individual’s 

control, such as race, height, and social origin. The second, 

called effort variables, are factors for which individuals 

are assumed to be responsible. In practice, it can be 

challenging to distinguish between factors that constitute 

circumstance and factors that constitute effort. Under 

this principle, inequalities due to circumstances holding 

other factors fixed are viewed as unacceptable and 

therefore justify interventions. Inequalities that arise from 

efforts, holding circumstances fixed, may be considered 

acceptable.4 A challenge is that it may not be possible 

to isolate ‘effort’ from circumstance, such as parental 

wealth.5 Even were there a clear distinction between the 

two, circumstances can shape an individual’s incentives 

to exert effort. Further, circumstances and efforts are 

not always observed, and unobserved efforts may be 

correlated with observed circumstances and observed 

efforts may be correlated with unobserved circumstances.

The second is a distinction between two kinds of 

discrimination: taste-based and statistical. To understand 

the difference, imagine a decision has to be made about 

some agent, say whether to give the agent a loan or give her 

a job. The decision maker sees information about the agent, 

including protected demographic information (gender, 

race etc). A decision maker who discriminates against 

an otherwise qualified agent as a matter of taste alone 

is said to exhibit taste-based discrimination. That is, the 

demographics of the agent directly affect the preferences 

of the decision maker (for instance, the decision maker 

finds working with people of a certain gender distasteful). 

In contrast, a decision maker who is unconcerned with 

the agent’s demographics per se, but understands that 

the demographics are correlated with the fitness of the 

agent for the task at hand is said to exhibit statistical 

discrimination. Given imperfect information about the 

agent’s fitness, the decision maker uses the demographic 

information to make statistically better decisions. In 

principle, statistical discrimination may vanish/attenuate 

if better information about the agent’s fitness were 

available. These forms of discrimination are conceptually 

and legally different. Indeed, laws in the US do allow for 

certain forms of statistical discrimination (the burden is 

on the decision maker to prove that decisions made using 

only other information would be statistically worse). The 

distinction is important because understanding the source 

of discrimination informs the possible policy response. It 

is well understood since Becker (1957) that taste-based 

discrimination is attenuated by competition between 

decision makers with heterogeneity in taste. However, 

short of providing better information, policies to reduce 

statistical discrimination are less well understood. 

The third relates to the burgeoning field of fair machine 
learning whose goal is to ensure that decisions guided by 

algorithms are equitable. Over the last several years, myriad 

formal definitions of fairness have been proposed and 

studied by the computer science community (Narayanan 

2018), (Hutchinson and Mitchell 2019), (Mitchell et al. 

2018). One idea calls for similar individuals to be treated 

similarly (Dwork et al. 2012), and requires an appropriate 

measure of similarity. Another idea calls for group-based 

definitions, requiring, for example, that algorithms have 

approximately equal error rates across groups defined 

by protected attributes, like race and gender (Calders and 

Verwer 2010), (Edwards and Storkey 2015), (Hardt et al. 2016), 

(Kamiran, Karim, and Zhang 2012), (Pedreshi, Ruggieri, and 

Turini 2008), (Zafar et al. 2015), (Zemel et al. 2013). However, 

Chouldechova (2017) and Kleinberg et al. (2018) show it is 

typically impossible to satisfy group-based constraints for 

different error measures simultaneously. Corbett-Davies 

et al. (2017) and Corbett-Davies and Goel (2018) further 

argue that group-based definitions have counterintuitive 

statistical properties and, in some cases, can harm the 

4 This principle is not immune to criticism. Some argue that individuals are entitled to benefit from their draw in the genetic lottery (circumstance), see Nozick 

(1974). Others, that equity requires all individuals be guaranteed a minimum level of welfare irrespective of circumstance or effort, see Rawls (1971).
5 Hufe et al. (2017) for example resolves this difficulty by restricting attention to individuals who are very young. In this case, it is hard to argue that effort 

variables will play a significant role.
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groups they were designed to protect. As a result, one 

might take a process-based approach, with decisions 

made by thresholding on an estimate of an individual’s 

risk (e.g., risk of default on a loan, or risk of recidivism), 

in this sense holding all individuals to the same standard. 

But this thresholding approach generally violates formal 

individual- and group-based definitions of fairness. Lastly, 

in those settings where sensitive attributes can be used 

(e.g., in medicine), then preference-based notions of 

fairness and decoupled classifiers have been suggested, 

requiring, for example that one group does not “envy” 

the classifier used for another group (Zafar et al. 2017), 

(Dwork et al. 2018), (Ustun, Liu, and Parkes 2019).  Others 

advocate for adopting a welfare-economics viewpoint  

in interpreting appeals to fairness (Hu and Chen 2019), 

(Mullainathan 2018).

The fourth relates to data biases (Suresh and Guttag 

2019). All statistical algorithms rely on training data, 

which implicitly encode the choices of algorithm 

designers and other decision makers. For example, facial 

recognition algorithms have been found to perform 

worse on dark-skinned individuals, in part because of a 

dearth of representative training data across subgroups 

(Buolamwini and Gebru 2018), (Raji and Buolamwini 2019). 

In other cases, the target of prediction (e.g., future arrest) 

is a poor — and potentially biased — proxy of the underlying 

act (e.g., conducting a crime). Finally, when the training 

data are themselves the product of ongoing algorithmic 

decisions, one can create feedback loops that reinforce 

historical inequities (Kallus and Zhou 2018), (Ensign et al. 

2018), (Lum and Isaac 2016). Mitigating these biases in the 

data is arguably one of the most serious challenges facing 

the design of equitable algorithms.

2. Decision Making and Algorithms
At present, the technical literature focuses on ‘fairness’ at 

the algorithmic level. The algorithm’s output, however, is 

but one among many inputs to a human decision maker. 

Therefore, unless the decision maker strictly follows 

the recommendation of the algorithm, any fairness 

requirements satisfied by the algorithm’s output need 

not be satisfied by the actual decisions. Green and Chen 

(2019), for example, report on an mTurk study that shows 

participants were more likely to deviate upward from 

algorithmic risk assessments for black defendants. M. 

Stevenson and Doleac (2019) discuss the introduction of 

risk assessment in sentencing in Virginia, and document 

that only a subset of judges appeared to integrate 

algorithmic risk assessment in their decisions.

Even if an algorithm’s output violates some measure of 

fairness, it need not follow that the final outcomes are worse 

than the status quo of decision making sans algorithmic 

support. Cowgill (2018a), for example, documents an instance 

where the introduction of algorithmic resume screening 

reduced discrimination against non-traditional candidates. 

Kleinberg et al. (2018) describe a policy simulation that 

suggests that risk assessments in conjunction with human 

decision making would lower racial disparities relative to 

judges deciding alone.  

The discussion above suggests the following questions:

a) �How do human decision makers interpret and integrate 

the output of algorithms?

b) �When they deviate from the algorithmic recommendation 

is it in a systematic way?

c) �What is the role of institutional incentives for decision 

makers?

d) �What can one say about the design of an algorithm that 

results in fair (fairer?) decisions by the human, which 

complements human decision making?

e) �What aspects of a decision process should be handled 

by an algorithm and what by a human to achieve 

desired outcomes? 

f) �The “insufficiently diverse research team” hypothesis, 

is often cited as a reason for unfair machine learning 

algorithms.6 Yet, we have no systematic documentation 

of the effects of biased programmers or the effects 

of diverse AI workforce on the outputs created by 

practitioners (Whittaker et al. 2018).

3. Assessing Outcomes
The outcome of an intervention can differ from its predicted 

effect because of the existence of indirect effects or 

feedback loops; for example, see predictive policing (Lum 

and Isaac 2016), (Ensign et al. 2018), as well as bail (Cowgill 
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2018b) recommendation. Hence, in addition to good-faith 

guardrails based on expected effects, one should also 

monitor and evaluate outcomes. Thus, providing ex ante 

predictions is no less important than ex post evaluations 

for situations with feedback loops. 

At present, there is a paucity of work that seeks to quantify 

the effect on outcomes across the many domains where 

we will see automated decision making.7 Measuring the 

effect of an algorithm on an outcome is inherently difficult 

because decisions made (or influenced) by an algorithm 

may have happened identically in the absence of the 

algorithm. Randomized controlled trials would be a natural 

way to assess such effects, but randomization may be 

repugnant in some applications of interest and requires 

smart experimental design.8  Short of randomized controlled 

trials, the regression discontinuity method (“RD” (D. S. Lee 

and Lemieux 2010)) is a useful tool for measuring causal 

impact. Many machine learning applications make use of a 

continuous prediction (or score) with a decision threshold 

for an intervention, and the RD method estimates causal 

effects by looking at examples slightly below and above 

this threshold (assuming they are otherwise essentially 

identical). Papers that have used RD to study the causal 

impact of algorithms include Cowgill (2018b), Berk (2017), 

Anderson et al. (2013), and M. Stevenson and Doleac (2019).

Another challenge is that the environments in which 

algorithm-assisted decision making are deployed are 

always in flux. Consider hiring — today a firm may value 

individuals with analytical skills but tomorrow people 

skills may become the priority. Automated tools for hiring 

may also lead to defining a more and more narrow set 

of characteristics to allow it to consider a larger set of 

candidates. See, for example, the advice given to job 

seekers here: https://www.jobscan.co/blog/top-resume-

keywords-boost-resume/.

Metrics to measure the extent of discrimination sometimes 

play an important role in regulatory guidelines but are 

challenging to develop and tend to be narrow in scope 

with effects that are hard to anticipate. A first example 

is the “four-fifths rule” of EEOC guidelines, which states 

that if the selection rate for a protected group is less than 

four-fifths of that for the group with the highest rate then 

this constitutes evidence of adverse impact.9 A second  

example is the use of a single metric to measure the 

performance of a system. Such a metric can easily miss 

inequality that arises through complex effects (Crenshaw 

1989), (Grusky and Ku 2008), (Grusky and Ku 2008). The 

domains in which algorithms are deployed are highly 

complex and dynamic, and data can pick up intersectional 

and multi-dimensional sources of discrimination (Abebe, 

Kleinberg, and Weinberg 2019).

Strategic considerations also play a role. For any proposed 

metric, one needs to identify the affected parties and their 

possible responses.10 Therefore, policies cannot be judged 

ceteris paribus. Some existing research has shown that 

changing the incentive structure of those implementing 

or using algorithmic recommendations can in itself also 

be a tool for change (see Kannan et al. (2017) for example). 

Theoretical research, particularly “impossibility theorems” 

(Chouldechova 2017), (Kleinberg et al. 2018), reveal that 

multiple attractive fairness properties are impossible 

to achieve simultaneously. Hence, it is inevitable that 

someone’s notion of fairness will be violated and that 

tradeoffs need to be made about what to prioritize. These 

6 The implicit suggestion of the work of Buolamwini and Gebru (2018) on biases in facial recognition technology (FRT) is that were there more programmers 

with dark skin this wouldn’t have happened. 
7 Some exceptions include work on discrimination and bias in the context of facial recognition technology (Buolamwini and Gebru 2018), online ads (Sweeney 

2013), word-embeddings (Bolukbasi et al. 2016), search engines (Noble 2018) and health information (Abebe et al. 2019).
8 In credit scoring, for example, Kilbertus et al. (2019) suggest approving everyone with a high enough score, and randomly approving applicants with an 

insufficient score.
9 This can be applied to any decisions related to employees — including hiring, promotion, and training.
10 For instance, there is a literature (Coate and Loury 1993) in economics on what role a community’s belief that they will be treated fairly (such as in education 

or access or the job market) affects their incentives to invest in human capital.
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results do not negate the need for improved algorithms. 

On the contrary, they underscore the need for informed 

discussion about fairness criteria and algorithmic 

approaches that are tailored to a given domain. Also, we 

must recognize that these impossibility results are not 

about algorithms, per se. Rather, they describe a feature 

of any decision process, including one that is executed 

entirely by humans.

The discussion above suggests the following questions:

a) �How do existing standards (e.g., disparate impact 

standards for hiring or housing) affect participation 

decisions and other quantities that are not directly 

scrutinized?

b) �In regard to endogenous algorithm bias (Cowgill 2018a), 

can we identify the interventions that could change or 

reduce it?

c) �Can we usefully model the feedback loop when designing 

metrics, and can we understand when a deployed 

system will still be able to be used for inference on 

cause and effect? 

d) �How can we design automated systems that will do 

appropriate exploration in order to provide robust 

performance in changing environments? 	

e) �Can we understand the common issues that prevent 

the adoption of algorithmic decision-making systems 

across domains and the common issues that produce 

harm across multiple domains?

4. Regulation and Monitoring
Prohibitions against discrimination in lending, housing, 

and hiring are codified in law but do not provide the 

precise way in which compliance will be monitored. Poorly 

designed regulations have costly consequences in terms 

of compliance costs for firms, as well as generate harm 

to individuals. 

Some have argued for “output’’ regulation. The “four-fifths 

rule”, mentioned above, is an example. Others favor “input’’ 

regulation because they are more easily monitored than 

outputs.  

Another challenge is that the disruption of traditional 

organizational forms by platforms (e.g., taxis, hotels, 

headhunting firms) has dispersed decision making. Who is 

responsible for ensuring compliance on these platforms, 

and how can this be achieved? On the one hand, platforms 

may be immune to existing regulation. For example, 

Section 230 of the Communications Decency Act (CDA) 

protects online software platforms from the actions of its 

users. At the same time, litigation and investigations have 

yielded penalties and changes (Levy n.d.). Platforms may 

also enable visibility into (and oversight of) discrimination 

that was previously difficult to observe.

Platforms lower the transaction costs of search and 

matching. Some, such as Lyft, make the match. Others, 

such as AirBnB, assist in search by curating and organizing 

the relevant information and making recommendations. 

Ostensibly innocuous, such recommendation and rating 

systems can have huge impacts. One area of concern, 

for example, is whether these kinds of systems can lead 

to the consumption of less diverse content. Although the 

effect of recommender systems on diversity is debated 

(Nguyen et al. 2014), (Fleder and Hosanagar 2009), (Möller 

et al. 2018), this would then mean algorithms having a role 

in creating filter bubbles, which have in turn been argued 

to exacerbate polarization.11 All this raises a number of 

questions. What does informed consent mean?  Who gets 

to decide what an individual sees? 

Effective regulation requires the ability to observe the 

behavior of algorithmic systems, including decentralized 

systems involving algorithms and people. To see the 

entire machine learning pipeline facilitates evaluation, 

improvement (including “de-biasing”), and auditing. On the 

other hand, this kind of transparency can conflict with 

11 Although there is evidence that the connection between the internet and social media and polarization is weak, see Boxell, Gentzkow, and Shapiro (2017).
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privacy considerations, hinder innovation, and otherwise 

change behavior. 

The discussion above suggests the following questions:

a) �When is output regulation preferable to input regulation 

and vice-versa? 

b) �Does the regulation of algorithms result in firms 

abandoning algorithms in favor of less inspectable 

forms of decision-making?

c) �If regulating inputs, which portion of the machine 

learning pipeline should be regulated? 

d) �How should platforms design the information and 

choices they offer their users to reduce discrimination? 

(Agan and Starr 2018) 

e) �How should recommenders or similar systems be 

designed to provide users with more control? (e.g. 

Ekstrand and Willemsen (2016), Yang et al. (2019)).

5. Educational and Workforce 
Implications
Is the human capital necessary to think carefully about 

fairness considerations as they relate to algorithmic 

systems in abundance? What should judges know 

about machine learning and statistics? What should 

software engineers learn about ethical implications of 

their technologies in various applications? There are 

also implications for the interdisciplinarity of experts 

needed to guide this issue (e.g., in setting a research 

agenda). What is the relationship between domain and 

technical expertise in thinking about these issues? 

How should domain expertise and technical expertise 

be organized: within the same person or across several 

different experts? How do we train computer scientists 

to understand and engage with broader contexts, and 

to communicate and engage with relevant experts to 

broaden this understanding? The prior literature on these 

questions related to training and ensuring a well-equipped 

workforce includes Deming and Noray (2018) on STEM 

careers and technological change, and Oostendorp (2019) 

and Colson (2019) in regard to data science training.

Looking forward, it seems important to understand 

the effect of different kinds of training on how well 

people will interact with AI based decisions, as well as 

understand the management and governance structure 

for AI decisions. Are managers (or judges) who have some 

technical training more likely to use machine learning-

based recommendations? Are they more or less likely to 

benefit from machine learning-based recommendations? 

In regard to governance, what is the appeals process and 

is there a role for ‘AI councils’? As our curriculum changes, 

we should also seek to understand whether explicitly 

embedding ethics training for computer science students 

influences bias-related outcomes. What about labor 

outcomes? For example, does domain expertise help in 

data science careers or vice versa?  

6. Algorithm Research 
Algorithm design is a huge, well-established community 

in computer science, with lots of great problem-solvers 

who would love to work on impactful problems. At the 

same time, fairness questions are inherently complex and 

multifaceted and incredibly important to get right. 

Today, it is reasonable to posit that a lot of work is 

happening around the various concrete definitions that 

have been proposed — even though practitioners may find 

some or even much of this theoretical algorithmic work 

misguided.

Given that it is hard to understand the intent behind 

different formalisms, a challenge that this presents to 

algorithm designers is that it makes it difficult to identify 

the most promising, technical algorithmic problems on 

which to work. This raises the question of how to promote 

cross-field conversations so that researchers with both 

domain (moral philosophy, economics, sociology, legal 

scholarship) and some technical expertise can help others 

to find the right way to think about different properties, 

and even identify if there are still dozens of properties 

whose desirability is not unanimously agreed upon.

Suppose an algorithms researcher comes up with a new 

algorithm and proves that it achieves a technical property, 

say that it equalizes false-positives. What sanity checks 

should be executed to see if this is for a silly reason? To 

draw an analogue: in the context of algorithmic game 

theory, it wouldn’t be interesting to design a protocol 

where honest behavior is a Nash equilibrium just because 
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behavior doesn’t affect payoff in any way. Might it be 

possible to develop a sense of what is necessary for a 

result to be interesting in the context of fairness and 

economics? Can we see a path towards a community 

of algorithm designers who also have enough domain 

expertise that they are capable of identifying promising 

new technical directions, and work that will be appreciated 

by domain experts?

7. Broader Considerations 
Some discussion amongst participants went to concerns 

about academic credit and how the status quo may guide 

away from applied work, noting also that the context 

of more applied work can be helpful in attracting  more 

diverse students into computer science (Whittaker et 

al. 2018).12 Others asked how one might promote more 

engagement with social science and researchers with 

domain expertise as well as policy-makers.13 There 

are also difficult ethical challenges with conducting 

empirical, data-driven research, as considered within 

the NSF supported PERVADE (Pervasive Data Ethics for 

Computational Research) project.14 

A thread that ran through all the discussions at the 

meeting was a sense that the research community may 

‘narrow frame’ the issues under consideration. This is the 

tendency to define the choices under review too narrowly. 

For example, the problem of selecting from applicants 

those most qualified to perform a certain function is not 

the same as guaranteeing that the applicant pool includes 

those who might otherwise be too disadvantaged to 

compete.  

The focus on prediction also leads to narrow framing. 

Predicting the likelihood of showing up for a bail hearing 

is not the same as understanding the reasons why an 

individual may be a no-show. The focus on one as opposed 

to the other leads to different interventions that could 

have dramatically different impacts. Prediction in this 

context, generally leads to the question of whether the 

individual should be released or not. Understanding the 

reasons behind a no-show may suggest interventions 

that lower the barriers to individuals to showing up. 

12 There is also a role for organizations such as Black in AI in fostering the involvement of individuals from under-represented groups and advocating  for 

taking a multi-disciplinary perspective in AI fairness.
13 Some early examples are the FAT* conference (an explicit call for interdisciplinarity) and the many interdisciplinary, but non-archival workshops, such as the 

MD4SG workshop, which provides space for “problem pitches” as well as more traditional formats.
14 This project is working on metrics for assessing and moderating risks to data subjects, discovering how existing ethical codes can be adapted and adopted, 

and disseminating evidence-based best practices for research ethics.
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