Thermodynamic Computing

Forward Through Backwards Time by RocketBoom

The 2nd Law of Thermodynamics

Clausius inequality (1865)

$$\Delta S_{\rm total} \ge 0$$

Total Entropy increases as time progresses

Cycles of time R.Penrose (2010)

Once or twice I have been provoked and asked the company how many of them could describe the Second Law of Thermodynamics. The response was cold. It was also negative. Yet I was asking something which is about the scientific equivalent of "Have you read a work of Shakespeare's?" – C. P. Snow

Thermodynamic Equilibrium: Future, past and present are indistinguishable

No change in entropy

What is Entropy?

 $S = \log{\text{Number of configurations}}$

1 natural unit of entropyequivalent to1 kT of thermal energy

T: Temperature (ambient 300 Kelvin

k : Boltzmann's constant

I kT = 25 meV= 2.5 kJ/mol

average kinetic energy = 1.5 kT

Unfolding of RNA hairpins. (circa 2000)

The (improved) 2nd Law of Thermodynamics

Clausius inequality (1865)

Jarzynski identity (1997)

$$\langle \Delta S_{\rm total} \rangle \ge 0$$

$$\langle e^{-\Delta S_{\text{total}}} \rangle = 1$$

equality only for reversible process

equality far-from-equilibrium

$$\Delta S_{\text{total}} = \frac{1}{T} (W - \Delta F)$$

Fluctuation Theorems:

Dissipation breaks time-reversal symmetry Work

Time

Free Energy

What have we learned?

$$\langle e^{-\Delta S_{\text{total}}} \rangle = 1$$

- There are exact, general relations valid far-from-equilibrium
- Trajectories are the primary objects (rather than states)
- The fluctuations matter
- Entropy change breaks time quantitatively reversal symmetry
- Directly relevant at small dissipation
- Information and entropy are related:
 Information flow is as important as work and heat flow.

Experimental verification of Landauer's principle linking information and thermodynamics

(2012)

Antoine Bérut¹, Artak Arakelyan¹, Artyom Petrosyan¹, Sergio Ciliberto¹, Raoul Dillenschneider² & Eric Lutz³†

Erasing I bit of information requires at least In 2 kT energy

Thermodynamic entropy and Shannon information are related

Bits are physical

Non-equilibrium Theory of erasure see: Esposito (2011)

Experimental verification of Landauer's principle linking information and thermodynamics

Antoine Bérut¹, Artak Arakelyan¹, Artyom Petrosyan¹, Sergio Ciliberto¹, Raoul Dillenschneider² & Eric Lutz³†

Erasure time

But: Thermodynamically reversible computation requires

Carnot limit, i.e. infinity long time

Experimental verification of Landauer's principle linking information and thermodynamics

Antoine Bérut¹, Artak Arakelyan¹, Artyom Petrosyan¹, Sergio Ciliberto¹, Raoul Dillenschneider² & Eric Lutz³†

Fluctuations matter!
Tradeoff between error, time, and energy

Research Highlights

Feedback Fluctuation Theorems (c2010)

Demon-system information

Sagawa & Ueda (2008) Horowitz & Vaikuntanathan (2010)

Research Highlights

Thermodynamics of Prediction

Still, Sivak, Bell, Crooks (2012)

Research Highlights 1/2

Optimal thermodynamic control

Coupled Systems

S Experiments

Feynman's ratchet Bang et al (2018)

Research Highlights 2/2

time-dissipation-error tradeoff

Thermodynamics uncertainty realtions

Lahiri, Sohl-Dickstein, Ganguli (2016)

T. R. Gingrich, J. M. Horowitz, N. Perunov and J. L. England (2015)

Self-organization and the generation of complexity