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▪  At every level, the nervous 
system uses strategies to 
maintain high performance 
and information transfer, 
while minimizing energy 
expenditure.  

▪  These range from ion 
channel distributions, to 
coding methods, to wiring 
diagrams (connectomes).  

Brains Reduce Energy Consumption 

Box 1. Some principles of computational anatomy.

Dimensionality reduction: Sensory input is high dimen-
sional—a visual scene comprises differences in brightness,
colours, numbers of edges, etc. If the retina did not
preprocess this visual information, we would have to handle
around 36 Gb/s of broadband information, instead of
20 Mb/s of useful data [73]. Preprocessing increases the
metabolic efficiency of the brain by about 1,500 times. The
requisite dimensionality reduction is closely related to
minimising complexity—it is self-evident that internal
representations or models of the sensorium that use a small
number of dimensions or hidden states will have a lower
complexity and incur smaller metabolic costs.
Energy-efficient signalling: Action potentials (APs) are
expensive commodities, whether they are used for local
computation or long-distance communication [59]. Energy-
efficient APs are characterised by Na+ channel inactivation,
voltage-dependent channel kinetics, and corporative K+

channels—as described by multiple gating currents, in-
ward-rectifying K+ channels, and high channel densities [7].
These biophysical innovations enable a neuron to produce
efficient APs that use the minimal currents necessary to
generate a given depolarisation.
Component size and numbers: Action potentials travel
considerable distances along densely packed axons, collat-
erals, and dendrites. The capacitance that must be charged
by APs increases with membrane area [101], constraining the
number and length of neuronal processes. It is fairly
straightforward to show that—to maintain information
transfer—the optimal solution is to decrease the number
of components. Assuming all neurons have the same
thresholds and energy consumption, the energy-efficient
solution is to minimise the number of components, under
computational constraints dictated by the ecological niche
of the animal [101].
Modular design: Very-large-scale integration circuits sug-
gest an isometric scaling relation between the number of
processing elements and the number of connections (Rent’s
rule [102]). Neuronal networks have been shown to obey

Rent’s rule, exhibiting hierarchical modularity that optimises
a trade-off between physical cost and topological complex-
ity—wherein these networks are cost-efficiently wired [103].
A modular design balances the savings in metabolic costs,
while preserving computational capacities. Hierarchical
modularity also emerges under predictive coding [33]. In
this context, the brain becomes a model of its environment,
which through the separation of temporal scales necessarily
requires a hierarchical connectivity.
Parallel architecture: The brain processes information in
parallel—be it frequency analysis in the inner ear or
analysing different attributes of a visual scene using
functional segregation. This parallel architecture mirrors
those used in modern-day microprocessors. For example, a
fast single-core microprocessor may consume 5 Watts and
execute a program in 10 seconds. If we bring together two
single cores, power will double and execution time will
halve, still consuming 50 Joules. Alternatively, a slow double-
core microprocessor that expends 2.5 Watts of power to
execute the program in 15 seconds could consume only 7.5
Joules. This energy saving works because power is propor-
tional to frequency cubed; therefore, halving the frequency
reduces the speed by two but conserves eight times the
power, making the microprocessor four times as efficient. In
short, if parallel architectures are combined with slow
computing speeds, the resulting system is energetically
more efficient.
Analogue versus digital: If analogue computing is so
efficient [104], why don’t neurons operate on an all analogue
basis? The obvious answer is signal processing in the digital
(such as AP) domain enables noise suppression. Noise
accumulation in analogue systems [73] speaks to hybrid
processing—the use of analogue preprocessing before
optimal digitisation. APs are useful in this context because
they have an inbuilt threshold mechanism that attenuates
noise. If a presynaptic signal is encoded as an AP and
transmitted, there is hardly any conduction loss, thereby
enabling a reliable transfer of information.

Figure 3. A revised energy budget for signalling in the grey matter of the rat brain. Incorporating the increased efficiency of APs in
mammalian neurons into Attwell and Laughlin’s (Figure 2) original energy budget—for grey matter in the rat brain—reduces the proportion of the
energy budget consumed by APs. Modified from [80].
doi:10.1371/journal.pcbi.1003157.g003
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▪  Nervous systems adapt their 
responses to the regularities of their 
input to increase the amount of 
transmitted information. 
–  Maximize efficiency (reduce 

redundancy). 

–  Responses should be independent 
of one another (decorrelation). 

–  A stimulus should involve only a 
small fraction of the available 
neurons (sparse). 

–  Neurons should span the input 
space. 

Organisms Must Be Efficient to Survive 

Louie	&	Glimcher,	P.W.	Ann	N	Y	Acad	Sci	1251,	13-32,	2012.;	H.	Barlow.	Network:	ComputaHon	in	Neural	Systems,	12(3):241–
253,	2001.;	J.	AHck.	Network:	ComputaHon	in	Neural	Systems,	3(2):213–251,	1992.		



▪  Sparse coding and dimensionality 
reduction is a ubiquitous coding 
strategy across brain regions and 
modalities,  

▪  Allows neurons to achieve nonnegative 
sparse coding (NSC) by efficiently 
encoding high- dimensional stimulus 
spaces using a sparse and parts-based 
population code.  

▪  Reducing the dimensionality of 
complex, multimodal sensory streams is 
critically important for metabolically 
constrained brain areas to represent the 
world.  

Sparse and Reduced Representations 

Beyeler, M., Rounds, E. L., Carlson, K. D., Dutt, N., & Krichmar, J. L. (2017). Sparse coding and dimensionality 
reduction in cortex. bioRxiv. doi:https://doi.org/10.1101/149880 
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▪  The brain uses local analog computing 
and binary-spike communication. 
–  Event-driven, asynchronous.  
–  Minimal energy expenditure between 

spikes. 
–  Low frequency output.  

▪  The brain is a small world network.  
–  Any two neurons are only a few hops away 

from each other. 
–  Reduces wiring, but maximizes 

information processing.  

Brains Use Sparse Communication 

Karlheinz Meier, IEEE Spectrum, 2017. 
Sporns, Tononi & Edelman, Cereb Cortex. 2000 Feb;10(2):127-41. 



Neuromorphic Chips 



▪  Morphological Computation 
–  Certain processes are performed by 

the body that free up brain processing. 

Embodiment: Non-Neural Theromodynamic Computing 

Pfeifer & Bongard, How the Body Shapes the Way We Think. 

conditions in the future may become too chal-
lenging for a species that already seems to
encounter extreme conditions during its life-
time movements.
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Fig. 3. Three-dimensional movement of a frigate bird at three scales.
(A) Section of a track of a frigate bird traveling with side winds. (B) En-
largement showing the movement alternating gliding and soaring, resulting
in a zig-zag and roller-coaster movement. (C) Detailed schematic repre-
sentation of a single cycle of soaring and gliding, illustrating the climb by
circling, with a resulting drift due to wind, followed by the descent.
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Fig. 4. Altitudinal movement of a frigate bird in relation to potential atmospheric conditions.
The traveling flight is performed between 30 and 600 to 700 m altitude in a band with regular winds,
avoiding the turbulence close to the surface. The bird occasionally climbs to 2000 m within cumulus
clouds that form by convection, whose base is at 600 to 700 m and whose vertical extension is
limited by the inversion layer where strong shear occurs. A schematic presentation of the updrafts
and downdrafts characteristic of cumulus clouds is shown at left (24).
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▪  Intelligent agents are equipped with a value 
system which constitutes a basic set of 
assumptions about what is good or bad. 

▪  Organisms adapt their behavior through 
value systems. 

▪  Minimizing surprise, by predicting future 
outcomes, minimizes the expenditures 
required to deal with unanticipated events.  

Value and Prediction 



Neural Correlates of Value 

Avery & Krichmar, Front. Neuro, 2017 

DA	–	Reward	predic.on;	5-HT	–	Risk	aversion;		
ACh	–	A;en.on	(Expected	Uncertainty);	NA	–	A;en.on	(Unexpected	Uncertainty)	



▪  Prediction is crucial for fitness 
in a complex world and a 
fundamental computation in 
cortical systems. 

▪  This requires the construction 
and maintenance of an 
internal model. 

▪  The brain maintains internal 
models for a wide range of 
behaviors; from motor control 
to language processing.  

Reducing Surprise Through Prediction 

Clark (2013) Behav Brain Sci; Hickok, Houde & Rong (2011) Neuron;  
Richert, Fisher, Piekniewski, Izhikevich, & Hylton (2016), arXiv:1608.06277. 

Krichmar,	Hwu,	Zou	&	Hylton,	CogniHve	ComputaHon	and	
Systems,	In	Press.	



▪  Natural systems must adapt or evolve to 
resist a tendency toward disorder in an ever-
changing environment (Ashby, 1947).  

▪  Any self-organizing system that is at 
equilibrium with its environment must 
minimize its free energy (Friston, 2010).  

Biological Organisms Minimize Free Energy 



Free Energy Principle - Unifying Brain Theory 

Nature Reviews | Neuroscience
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Infomax and the redundancy
minimization principle

Maximization of the mutual 
information between sensations 
and representations

Probabilistic neuronal coding

Encoding a recognition density 
in terms of conditional 
expectations and uncertainty

The Bayesian brain hypothesis

Minimizing the difference between a 
recognition density and the conditional 
density on sensory causes

Computational motor control

Minimization of sensory 
prediction errors

Predictive coding and hierarchical inference

Minimization of prediction error 
with recurrent message passing

Perceptual learning and memory

Optimization of synaptic efficacy 
to represent causal structure 
in the sensorium

Associative plasticity

Optimization of synaptic efficacy

Optimal control and value learning

Optimization of a free-energy 
bound on surprise or value

Model selection and evolution

The free-energy principle

Optimizing the agent’s model and 
priors through neurodevelopment 
and natural selection

Minimization of the free energy of 
sensations and the representation 
of their causes

Attention and biased competition

Optimization of synaptic gain 
representing the precision 
(salience) of predictions
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predictions) or action (so as to change the sensations 
that are predicted). Crucially, these predictions depend 
on prior expectations (that furnish policies), which 
are optimized at different (somatic and evolutionary) 
timescales and define what is valuable.

What does the free-energy principle portend for the 
future? If its main contribution is to integrate estab-
lished theories, then the answer is probably ‘not a lot’. 
Conversely, it may provide a framework in which cur-
rent debates could be resolved, for example whether 
dopamine encodes reward prediction error or sur-
prise126,127 — this is particularly important for under-
standing conditions like addiction, Parkinson’s disease 
and schizophrenia. Indeed, the free-energy formulation 
has already been used to explain the positive symptoms 
of schizophrenia in terms of false inference128. The free-
energy formulation could also provide new approaches 

Figure 4 | The free-energy principle and other theories. Some of the theoretical constructs considered in this Review 
and how they relate to the free-energy principle (centre). The variables are described in BOXES 1,2 and a full explanation 
of the equations can be found in the Supplementary information S1–S4 (boxes).

to old problems that might call for a reappraisal of  
conventional notions, particularly in reinforcement 
learning and motor control.

If the arguments underlying the free-energy principle  
hold, then the real challenge is to understand how it 
manifests in the brain. This speaks to a greater appre-
ciation of hierarchical message passing41, the func-
tional role of specific neurons and microcircuits and 
the dynamics they support (for example, what is the 
relationship between predictive coding, attention 
and dynamic co ordination in the brain?129). Beyond  
neuroscience, many exciting applications in engineering, 
robotics, embodied cognition and evolutionary biology 
suggest themselves; although fanciful, it is not difficult to 
imagine building little free-energy machines that garner 
and model sensory information (like our children) to 
maximize the evidence for their own existence.
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Biomimetic Architecture for Thermodynamic Computing 



▪  A closed loop system where the control (artificial brain) is 
closely coupled with the body (robot) and the world 
(environment).  
–  The agent has innate values, derived from the environment and 

value systems, which send signals to the brain to adapt behavior.  
–  Since value is inversely proportional to surprise, predicting value is 

key to the agent’s fitness.  
▪  The world is dynamic, the agent must adapt its behavior to 

survive.  
–  Fitness Evaluation is the metric for evolving these algorithms 

•  How long the system can perform without intervention.  
•  How successful the system is in the task environment. 

•  How energy efficient the system is in performing a task.  

Biomimetic Architecture for Thermodynamic Computing 



More to Explore 

▪  Beyeler, M., Rounds, E.L., Carlson, K.D., Dutt, N., and 
Krichmar, J.L. (2017). Sparse coding and 
dimensionality reduction in cortex. bioRxiv. 
–  https://www.biorxiv.org/content/early/2017/06/14/149880 

▪  Krichmar, J., Severa, W., Khan, S., Olds, J. (2018). 
Making BREAD: Biomimetic strategies for Artificial 
Intelligence Now and in the Future. arXiv. 
–  https://arxiv.org/abs/1812.01184 
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▪  To get a truly cognitive system one must study and be inspired 
by the brain and body of natural systems.  

▪  Biological intelligence is an existence proof and currently our 
only working model.  

▪  Following this will ultimately lead to intelligent cognitive robots 
and assistants. 

Future Outlook… 



Hippocampus – Learning and Memory 



Hippocampus – Learning and Memory 

Krichmar, J.L., Nitz, D.A., Gally, J.A., and Edelman, G.M. (2005). PNAS, 102, 2111-2116. 



Self-Driving using CNNs on Neuromorphic Hardware  
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Hwu, T., Isbell, J., Oros, N.,& Krichmar, J. IJCNN 2017 



Dopamine – Reward, Saliency, Novelty, Invigoration 

Neural Correlates of Value 

Avery & Krichmar, Front. Neuro, 2017 



Serotonin – Harm Aversion, Anxious States, Withdrawal 

Neural Correlates of Value 

Avery & Krichmar, Front. Neuro, 2017 



Norepinephrine – Vigilance, Unexpected Uncertainty 

Neural Correlates of Value 

Avery & Krichmar, Front. Neuro, 2017 



Acetylcholine	–	Memory	Consolida.on,	A;en.on,	Expected	Uncertainty	

Neural Correlates of Value 

Avery & Krichmar, Front. Neuro, 2017 



▪  Open Field Test for Rodents and Robots 
–  Gold standard test for anxiety and obsessive compulsive 

disorders in animal models. 

–  Typical behavior 
Anxious – stay close to the walls until convinced it is safe. 

Curious – make crossings in the open and explore novel objects. 

Value-Based Neurorobot 

Krichmar Influence of neuromodulatory signaling on neurorobot behavior

FIGURE 3 | Behavioral and neural responses in the intact model. The
time constants τDA and τ5−HT were both set at 50. (A) Behavioral and
neural responses in a representative trial. The x-axis for all charts shows
the time of the trial in seconds. The chart labeled “Behavioral State”
denotes the state of the robot at a given time. The charts labeled “State
Neurons,” “Events,” “ACh/NE,” and “Neuromodulatory Neurons” show the
neural activity over the trial, where dark blue equates to no activity and

bright red equates to maximal activity. Note that Event neurons were
binary. The chart labeled “Tonic Neuromodulation” denotes the level of
tonic activation contributing to DA and 5-HT neurons. (B) The proportion of
Curious (ExploreObject and OpenField) and Anxious (FindHome and
WallFollow) behavior averaged over 5 trials. The error bars denote the
standard error. The histogram binned the behavior in 10 s windows. (C)
Similar to (B) except the behaviors were time-locked to the Light event.

Frontiers in Neurorobotics www.frontiersin.org February 2013 | Volume 7 | Article 1 | 6

Krichmar, Front. Neurorobot, 2013 



Predicting User Preferences with a Tactile Robot 

Chou, T.-S., Bucci, L. D.,& Krichmar, J. L. Front. Neurorobot, 2015.  



Predicting User Preferences with a Tactile Robot 



▪  Mental simulation can predict 
outcomes and overcome uncertainty.  

▪  Mentalizing 
–  Ability to understand another’s state and 

plan accordingly 

▪  Mental imagery is thought to be an 
important component for developing 
artificial systems that are cognitive or 
conscious. 

Mental Imagery 

Vernon,	MeVa,	&	Sandini	(2007)	IEEE	Transac-ons	on	Evolu-onary	Computa-on	
Chella		and	Manzo^	(2011).	ArHficial	Consciousness.	PercepHon-AcHon	Cycle:	Models,	Architectures,	and	Hardware	1,	637-671.		



▪  Developed a simple model based 
algorithm to recursively “imagine” 
how the effects of its own actions 
would affect another’s actions.  

▪  Designed a predator-prey 
scenario  
–  Agent maximizes positive value 

•  Acquiring food.  

–  Minimizes negative value 
•  Eaten by a predator. 
•  Starving.  

Predicting Value through Mental Imagery 

Krichmar, Hwu, Zou & Hylton (Submitted) Frontiers in Neurorobotics. 



▪  Model-based system 
that could mentalize 
outperformed a model-
free reinforcement 
learning algorithm.  

▪  Highlights advantage 
of planning ahead 
before taking actions 
in dynamic, noisy 
environments.  

Predicting Value Through Mental Imagery 

Random Model 
Based 

Model 
Based 
With 
Noise 

Model 
Free 

Model 
Free 
With 
Noise 



▪  Plasticity is modulated by value 
–  Signaled by neuromodulatory systems and 

hormonal systems. 

–  Predicted by frontal cortex and limbic system.  

▪  Value systems control which neuronal groups 
are selected and which actions lead to 
evolutionary fitness  
–  Predicting outcomes that lead to positive value and 

avoid negative value. In this sense, predicting value 
is inversely proportional to surprise.  

▪  From a nonequilibrium thermodynamic 
perspective  
–  Value is associated with those actions that minimize 

the increase of entropy (e.g., feeding, predicting 
outcomes, gathering information).  

–  Efficient movement, efficient alert sensory scanning 
of the environment, and foresight.  

Theory of Neuronal Group Selection  

Edelman, Neural Darwinism, 1993. 



Emergence of Cognition Occurs at Multiple Timescales 

Pfeifer & Bongard, How the Body Shapes the Way We Think. 



▪  That 1.3 kilogram lump of neural tissue you carry around in your head 
accounts for about 20 percent of your body’s metabolism.  
–  An average basal metabolism of 100 watts, each of us is equipped with the 

biological equivalent of a 20-Watts supercomputer.  

–  Today’s most powerful computers, running at 20 million Watts, can’t come close 
to matching the brain. 

▪  The brain has relatively shallow but massively parallel networks.  
–  At every level, from deep inside cells to large brain regions, there are feedback 

loops that keep the system in balance and change it in response to activity from 
neighboring units.  

–  The ultimate feedback loop is through the muscles to the outside world and back 
through the senses. 

Brain Computing Facts 

Fred	Rothganger,	IEEE	Spectrum	2017	


