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The voids of computing 
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Present digital computers 

Major limitations of digital 
computers: 
 
•  End of Moore’s law 

•  Von Neumann architecture 
•  Boltzmann tyranny 
•  Boolean logic 
•  Turing limit 



A transistorless all-“memristor” Hopfield network 
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Synapses + neurons 

Kumar et al., Nature, 548, 318 (2017) 

1.  Synaptic memristors – nonvolatile storage 
•  New device property:  analog tunability 

2.  Neuronic memristors – volatile storage + nonlinearity 
•  New device property:  chaotic dynamics 

Memristor matrix 
Noise-driven annealing. 



Performance benchmarking – larger NP-hard problems  

4 Unpublished  



A physics-driven computer program 
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Materials + Physics 

Devices + Interactions 

System + Software 

Physical models 

Compact models + 
Architecture 

New architectures, e.g.: 
Hopfield networks, 
Boltzmann machines 

New device behaviors, e.g.: 
Action potential, chaos 

New physics, e.g.:   
Thermal behavior during 
Mott transitions 



Nonlinear electronics – why it’s important 
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All memristors are inherently nonlinear devices. 
 
 
As devices are shrunk to the nanoscale, they interact with their 
environment à more state variables à nonlinearity is inevitable 

η∝𝑇​(​​𝑘↓𝐵 /​𝐶↓𝑡ℎ  )↑​​1/2   ​4π/​𝑅↓𝑡ℎ ​𝐶↓𝑡ℎ   Small devices can be driven by thermal 
noise, especially as they approach “kT”. 
 
How do we make use of this? 



Why local activity is important 

Nonlinearity à  
Local activity à  
Chaos à  
Edge of chaos à  
Complexity and emergence 
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Chua, “Local activity is the origin of complexity” 
Chua, “Neurons are poised near the edge of chaos” 
Chua, “Local activity principle” 



Extreme nonlinearity? 
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𝑖=𝐺𝑣 

𝐺=𝜓​𝑇↑𝜉  

Voltage 

Current 

0 < ξ <1 

ξ >1 ξ =0 

Multi-stability! 

Local activity à  the ability to 
amplify energy 



Thermodynamics of electronic devices:  e.g.:  decompositions 
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The origin of nonvolatile storage in 
ReRAM 

All device/circuit models so 
far: 
 
1. Behavior governed by  
i, v, P, Q 
 
 
The two missing pieces of 
device models: 
 
1. Behavior governed by 
thermodynamic quantities 
 
2. Spontaneous symmetry 
breaking during instabilities. 

Kumar et al., Nature Communications, (2018) 
Kumar et al., Advanced Materials, 28, 2772 (2016) 
Ridley, Proc. Phys. Soc., 82, 954 (1963) 

​​𝑗↓U = ​𝑗↓L .(1−𝑥)+ ​𝑗↓H .(𝑥) 



How thermal noise interacts with local activity 
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1.  Smaller devices à more thermal 
fluctuations  (< 50 nm) 

2.  More thermal fluctuations à higher 
likelihood of filament formation à failure 
likely 

3.  Dynamics become more interesting, 
and also noisier. 

4.  Most nonlinear transports allow for 
tunability of many of the above. 
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New physics in Mott insulators! 

​𝑖↓m =[​𝜎↓0 ​e↑− ​0.301/2​𝑘↓B 𝑇  𝐴{​(​​𝑘↓B 𝑇/𝜔 )↑2 (1+(​𝜔√⁠​​𝑣↓m ∕𝑑  /​
𝑘↓B 𝑇 −1)​e↑​𝜔√⁠​​𝑣↓m ∕𝑑  /​𝑘↓B 𝑇  )+ ​1/2𝑑 }]​𝑣↓m   

​d𝑇/d𝑡 = ​​𝑖↓m ​𝑣↓m /​𝐶↓th  − ​𝑇− ​𝑇↓amb /​𝐶↓th ​𝑅↓th    

​R↓th (T)= {█1.4× ​10↑6  (for T≤​T↓MIT )@2× ​10↑6  (for T>​T↓MIT )   
Strange behavior! 

Modified 3D Poole Frenkel 

Kumar, Nature Comms. 8, 658 (2017) 

Confirmed by x-ray and thermal mapping 



Broad pointers 

1. Practically, all future electronic devices will contain extreme nonlinearities 
2. Any device model should account for  

1.  Local activity 
2.  Interaction with ambient state variables and their perturbations 
3.  I, V, t, T – dynamics is important! 
4.  Spontaneous symmetry breaking 
5.  Most importantly, thermodynamic extremization 

3. The search for device behaviors should be informed by simulating the 
performance of the architectures – this is where we do not use transistor 
emulators! 

4. Continue to broaden the inventory of physical processes that lead to interesting 
device physics. 
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Mott transition and a “free energy well” 
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A chaos-driven computer 
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Classical analog annealing accelerators 
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Hopfield network 
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E=−​1/2 ∑𝑖↑▒∑𝑗↑▒​𝑠↓𝑖,𝑗   ∑𝑘↑▒∑𝑙↑▒​𝑠↓𝑘,𝑙 ​𝑤↓​(𝑖,𝑗),(𝑘,𝑙)   +∑𝑖↑▒∑𝑗↑▒​𝑠↓𝑖,𝑗 θ   

​𝑤↓(𝑖,𝑘),(𝑙,𝑗) =− ​𝐶↓1 ​𝛿↓𝑖,𝑙 (1− ​𝛿↓𝑘,𝑗 )− ​𝐶↓2 ​𝛿↓𝑘,𝑗 (1− ​𝛿↓𝑖,𝑙 )− ​𝐶↓3 − ​
𝐶↓4 ​𝐷↓𝑖,𝑙 ( ​𝛿↓𝑗,𝑘+1 + ​𝛿↓𝑗,𝑘−1 ) 
 

Program rule:  

Energy function:  

Kumar et al., Nature, 548, 318 (2017) 
US Patent App. 15/141,410 
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Statistics of many solutions with and without chaos 
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Literally annealing the system into its solution! 

Kumar et al., Nature, 548, 318 (2017) 

We only want better solutions quickly. 
 
High precision à prohibitive slow downs 

- Room temperature 
- Scalable  



The traveling salesman problem 
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The Traveling 
Salesman problem 

Objective: 
 
Find the shortest path 
 
Constraints: 
 
1.  Visit every city once 
2.  Visit every city no more than once 
3.  Do not visit more than one city in a given stop 



“Hard” problems 
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It is non-deterministic polynomial (NP) 
complete. 
 
 
 
Other NP-complete/hard problems: 
 
Gene sequencing/traveling salesman 
 
Sudoku 
 
Pokemon 
 
Candy Crush 
 
Vehicle routing 
 
Open shop scheduling 



Challenges of analogue systems 
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Why did analogue computers die after the 1970’s? 
 
Difficult to design 
Difficult to reprogram 
Did not scale 
Digital emulators were error prone 
 
Did not offer precision 
 
Digital offered precision and scalability 
 
In short, we used analogue systems for the wrong set 
of problems. 
 
 
 
 
 
 
 

Non-scalable,  
non reprogrammable 

Example: graph coloring using analogue oscillators 

Parihar et al., Scientific Reports, 7, 911 (2017) 



Computationally hard problems and nonlinear dynamics 

“Hard” problems 
 
  

Nonlinear differential equations 

 
 

Chaotic dynamics  
 

 
Exponential reduction in time to 

solution 

(exponential increase in energy 
expenditure) 
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Chaos in SUDOKU 

Ravasz et al., Scientific Reports, 2, 725 (2012) 



Memristors can emulate both synapses and neurons! 
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Pickett, Nature Materials, 2014 
Kumar, Nature, 2017 
Chua, “Neurons are poised near the edge of chaos”, 2012 

Synapse 

Action 
potential 

Edge of 
chaos 


