Thermodynamic Computing – Model Systems

Todd Hylton UC San Diego

CCC Thermodynamic Computing Workshop
January 3, 2019

Technology Landscape

- Sensing
- Display
- Wireless communication & internet
- Computing at the edge

Mobile Phones

Dynamic, Online, Real World

IoT

- Robotics
- Industrial Internet
- Self-driving Cars
- Smart Grid
- Secure Autonomous Networks
- Real-time Data-to-Decision

Intelligent
Adaptive Systems
"ROBOTS"

Learn

Program

WiredInternet

Desktop / Workstation

- Data Integration
- Large scale storage
- Large scale computing

Static, Offline,
Virtual World

Data Center / Cloud

Conceptual Landscape

Dynamic Modeling

- Calculus
- Systems of Differential Equations
- Lagrangian, Hamiltonian physics

Dynamic, Online, Real World

Experiential Learning & Inference

- Non-equilibrium thermodynamics
- Predictive learning
- Evolution

Program

Learn

Static Modeling

- Arithmetic
- Algebra
- Searching
- Sorting

Statistical Learning & Inference

- Probability and Statistics
- Equilibrium thermodynamics
- Deep learning

Static, Offline,
Virtual World

Thermodynamic Computing – System Concept

Thermodynamic Computers are open thermodynamic systems embedded in an environment of electrical and information potential.

Thermodynamic Computing - Basic Concept

- A generic fabric of thermodynamically evolvable elements or cores embedded in a network of reconfigurable connections.
- External *potentials* drive the flow of *currents* through the network.
- Energy dissipation creates fluctuations that stabilize adaptations that decrease dissipation as it equilibrates with a thermal bath.
- The system thermodynamically evolves to move current through the network with minimal loss.

Thermodynamic Computing - Conceptual Illustration

- Networks of simple ECs form a larger Thermo-Dynamic Computer (TDC)
- The "problem" is defined by the energy / information potential in the environment.
- Programmers can fix some of the ECs to define constraints / algorithms that are known to be of value.
- Dissipation within the network creates fluctuations over many length and time scales and thereby "search" for solutions over a very large state space.
- Structure precipitates out of the fluctuating state and entropy production increases in the environment as energy flows through the network and dissipation decreases

Role of Representations

- Explicit representations e.g. analog signals / pulses
 - naturally distribute energy and satisfy conservation laws (for energy, charge, etc.)
 - suffer from resistive losses in the network
 - probably impractical for the large networks

- Implicit representations e.g. "spikes" or "messages" or "numbers"
 - require coding (energy → message) and decoding (message → energy) at the cores
 - do not suffer resistive losses
 - require an accounting system to satisfy conservation laws
 - analogous to money in economic systems

Thermodynamic "Bit"

Circuit Concept

- Unstable state / inherent variations
- Environment influences variation / selection
- Selected state feeds back to the environment
- Weighting changes relative influence

Thermodynamics

Arbortron Demos – Stanford Complexity Group

Core Ideas

- A network of internal nodes ("neurons") is connected by bi-directional, weighted edges ("synapses") and
 driven by a collection of "external" nodes that bias the network with potential and charge.
- Internal nodes assume states ("potential") on the interval [-1, 1].
- Weights are real numbers describing the capacity to transport "charge" between the nodes. Charge is the product of the node state and edge weight.
- Network nodes optimize the transfer of charge from / to edges through selection of state.
- Charge is conserved via a detailed accounting system.
- Externally imposed potentials diffuse through the network to connect their corresponding external sources and sinks of charge. Network weights increase to facilitate this charge transport.
- Node state selection is determined by network-scale relaxation to a thermal bath using Boltzmann statistics.
- Residual charge remaining on the nodes after state selection, which is the source of "loss" in the system, adapts edge weights by relaxation to a thermal bath according to Boltzmann statistics.
- Many network topologies are possible naturally recurrent. There is no need to impose a hierarchy or "layers" upon the network.
- No back-propagation, no learning / decay rates, no drop-out...

- Nearest neighbor 2D grid with periodic boundary conditions
- 40,000 nodes
- 4 connections / node
- 101 Node states on [-1,1]
- 10 MCMC cycles to adapt nodes states before weight updates
- Energy scales selected to create "fluid" state

- Nearest neighbor 2D grid with periodic boundary conditions
- 40,000 nodes
- 4 connections / node
- 2 Node states on [-1,1]
- 10 MCMC cycles to adapt nodes states before weight updates
- Energy scales selected to create "fluid" state

- Nearest neighbor 2D grid with periodic boundary conditions
- 10,000 total nodes
- 16 pairs of periodically changing potentials at different frequencies (in green)
- 4 connections / node
- 101 Node states on [-1,1]
- 10 MCMC cycles to adapt nodes states before weight updates, which are visualized in the videos
- Energy scales selected to create "fluid" state for unbiased network.

- Random network
- 10,000 total nodes
- 16 pairs of periodically changing potentials at different frequencies (in green)
- 4 connections / node
- 101 Node states on [-1,1]
- 20 MCMC cycles to adapt nodes states before weight updates
- Energy scales selected to create "fluid" state for unbiased network.

- Next nearest neighbor network on 2D grid with periodic boundary conditions
- 40,000 total nodes
- 16 connections / node
- 2 Node states on [-1,1]
- 10 MCMC cycles to adapt nodes states before weight updates
- Energy scales selected to create "fluid" state.

Observations

- Code analysis (Python)
 - 40% (~620 lines) I/O, setup and overhead
 - 56% (~860 lines) Model infrastructure and accounting
 - 4% (~60 lines) Thermodynamics
- In natural systems we are similarly overwhelmed with the details of previously evolved organization
- In Thermodynamic Computing systems we should expect something similar
 - Large amount of engineered hardware and software infrastructure
 - An almost "invisible" thermodynamically evolving capacity

A Thermodynamic Computer Is...

- a network of nodes
- that globally selects node states to efficiently transport charge
- that locally adapts connectivity to improve transport efficiency
- as driven by external potentials
- as constrained by a designer
- as it equilibrates with a thermal bath