Learning to listen to plants

—

tools for efficient water use

Abe Stroock

Robert F. Smith School of Chemical and Biomolecular Engineering
Cornell University
organism-as-sensor
The neglected eukaryote

water stress?
nitrogen status?
root architecture?
microbiome?
stomatal regulation?
metabolic rates?
hormone signals?
...

(Stroock et al., ARFM, 2014)

(Gray’s Anatomy, 1858)
Water stress controls biology...

GROWTH

wonderopolis.org

QUALITY

bamag solutions.com

YIELD

starkbros.com

DISEASE

phys.org
Water stress is increasing

Oct. 2014
U.S. Drought Monitor

California

Sept. 2016

Drought Severity
- Abnormally dry
- Moderate drought
- Severe drought
- Extreme drought

Rainfed crop yield loss

<table>
<thead>
<tr>
<th>Region</th>
<th>Fruit% loss</th>
<th># fruit farms</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>13%</td>
<td>2</td>
</tr>
<tr>
<td>II</td>
<td>20%</td>
<td>5</td>
</tr>
<tr>
<td>III</td>
<td>75%</td>
<td>4</td>
</tr>
<tr>
<td>IV</td>
<td>79%</td>
<td>5</td>
</tr>
<tr>
<td>V</td>
<td>30%</td>
<td>4</td>
</tr>
<tr>
<td>VI</td>
<td>33%</td>
<td>43</td>
</tr>
<tr>
<td>VII</td>
<td>69%</td>
<td>14</td>
</tr>
<tr>
<td>VIII</td>
<td>60%</td>
<td>2</td>
</tr>
</tbody>
</table>

Mean% loss 47%
Total # farms 79

Irrigated crop yield loss

<table>
<thead>
<tr>
<th>Region</th>
<th>Fruit% loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0%</td>
</tr>
<tr>
<td>II</td>
<td>4%</td>
</tr>
<tr>
<td>III</td>
<td>14%</td>
</tr>
<tr>
<td>IV</td>
<td>13%</td>
</tr>
<tr>
<td>V</td>
<td>4%</td>
</tr>
<tr>
<td>VI</td>
<td>14%</td>
</tr>
<tr>
<td>VII</td>
<td>15%</td>
</tr>
<tr>
<td>VIII</td>
<td>25%</td>
</tr>
</tbody>
</table>

Mean% loss 11%
Total # farms

(Sweet et al., Ag Forest Meteor, 2017)
Water stress is *not* controlled

40% of all food crops are irrigated

irrigation accounts for 70% of human use of fresh water.

typical irrigation provides 200% of water needed by crop

(Fereres and Soriano, 2007; United Nations, 2012)

1 almond 1.1 gallon water

(Mother Jones)
State-of-the-art

Schölander Pressure Chamber (1965)
stress = tension = *negative* pressure
stress = tension = negative pressure
synthetic plants?

synthetic plants vs. plants

-220 atm

C. Tuberculata (warty zieria)

(Larter et al., Plant Phys, 2016)

(Schöander et al., Science (1965))

synthetic plants - development

“μTensiometer”

Alan Lakso Vinay Pagay Michael Santiago Siyu Zhu Winston Black
synthetic plants ↔ real plants

Grape
(Matchbook Wines; Zamora, CA)

Almond
(Done-Again Farm; Arbuckle, CA)

Apple
(Cornell Orchards; Ithaca, NY)

Corn
(Musgrave Farms; Auburn, NY)

\[\Psi_{stem} \]

stem (trunk)

xylem

μTensiometer

STRESS!
almonds

John Monroe
Done Again Farm - Arbuckle, CA
Blue Diamond Growers Board

2015

(Lucy Nicholson/Reuters)
almonds – dynamical system

John Monroe
almonds – under sampled

summer 2017

irrigation
almonds – connecting the dots

Done-Again Farm, Arbuckle, CA

microTensiometer

irrigation

OVER IRRIGATED

OPTIMAL

STRESSED

Michael Santiago

FloraPulse
irrigation

1 CO₂
100’s H₂O

→ properties of soil, roots, trunk, stomates, canopy,...
almonds – resolving the dynamics

weather (environment)
dynamics

model (physiology)

Siyu Zhu
Kathryn Haldeman
almonds – resolving the dynamics

weather (environment)

model (physiology)

dynamics

Siyu Zhu
Kathryn Haldeman
almonds – resolving the dynamics

weather (environment)

model (physiology)

dynamics
almonds – closing the loop

→ Process Optimized Water Management
(efficiency, yield, quality, labor, profit, environment,...)

(Sheng et al., arXiv, 2018)
almonds – supporting good management

(Cornell/USDA/UC Davis/WSU)
models

organism-as-sensor

systems

organism-as-sensor

satellite/drone + organism-as-sensor + cloud + farmer/scientist

data digital twin

decision support optimization discovery
Thank you.