Coupling nature and nurture: supercharging predictions for agricultural crops

Diane Wang University at Buffalo

AAAS Meeting 2019 Session: Sustainably Feeding 10B people Feb. 16, 2019

Year	Burpless Hybrid	Tendergreen
2016	sweet	sweet
2017	very bitter	sweet
2018	mildly bitter	sweet
2019	???	???

Cucumber image: Nutriliving.com

genotype by environment interaction

"G by E"

Breeding is accelerated evolution

Stone Age hunter-gatherers

Source: Detail from The Stone Age' (1882-1885); painting by Viktor M. Vasnetsov.

Threshing wheat, ~1400 BCE, Egypt

Crop Domestication

Early human domesticators preserved and propagated plants that had favorable traits

→ initially unintentional → led to genetic changes

Eventually, domesticated crops looked, tasted, and behaved quite differently from their wild ancestors

Source: HHMI

- Plant architecture
- Ear structure
- Seed structure
- Seed coloration

Source: maize.uga.edu

Green Revolution

1960s, 1970s

Source: Mohindra Rising tractor company

Source: FAOSTAT

1967: Indian farmer Nekkanti Subbarao – "Mr. IR8"

A match made between "G" and "E"

traditional

Source: Khush 2001, Nature Reviews

Source: RiceToday v. 5 pg. 36

A match made between "G" and "E"

traditional

Source: De Datta PMCP presentation, 2018

Submergence constrains rice production in flood-prone regions

Farmer re-transplanting rice field due to floods

Vergara and Mazaredo 1975; HilleRisLambers and Vergara 1982; Mohanty and Chaudhary 1986; Mackill et al. 1993; Mackill et al. 1996

Development of submergence-tolerant rice

Marker-assisted selection

Xu and Mackill 1996; Xu et al. 2006; Septiningsih et al., 2009; Bailey-Serres et al. 2010

No yield cost under favorable conditions + yield benefit under submergence

Source: Ismail et al. 2013

Flood-affected rice fields (10d submergence) (UP, India). Photo taken 27 days after water receded

By 2012, 4 million farmers across India, Bangladesh and Nepal adopted Sub1 varieties

Farmer Nekkanti Subbarao

with IR8 in 1967

Trends in rice (paddy) area, production, and yield in India 1970-2015

Source: Data from Ministry of Agriculture, GOI

Climate change will increase the urgency with which breeders make selection

Climate change will increase the urgency with which breeders make prediction

Nigerian rice farmers at harvest

Indian rice farmer using a pest management mobile app

Source: Jeremy Weate/Flickr

Source: ICRISAT