Data Analytics for Wireless Communication and sensing

Lili Qiu

UT Austin

Use Cases

- Predict wireless performance [INFOCOM'16]
- Network test site selection and diagnosis [ICNP'17]
- Wireless Sensing [MobiCom'19]

Use Cases

- Predict wireless performance [INFOCOM'16]
- Network test site selection and diagnosis [ICNP'17]
- Wireless Sensing [MobiCom'19]

Limitation of Average SNR

Avg. SNR is widely used for delivery ratio estimation

SNR is not a good predictor in Freq. Selective Channels

Frequency Diversity

 Wireless channel are frequency selective

Bandwidth is increasing with new standards

Due to frequency diversity, average SNR cannot predict wireless

Effective SNR

- Effective SNR shows better results than Avg. SNR
- Approach
 - 1. Map the SNR per subcarrier to BER

$$BER_{eff,k} = \frac{1}{N_{subs}} \sum BER_k(SNR_k)$$

2. Map $BER_{eff,k}$ back to Effective SNR

$$\rho_{eff,k} = BER_k^{-1} (BER_{eff,k})$$

3. Use Effective SNR to select the appropriate rate

How Accurate is Effective SNR?

Effective SNR Accuracy

Scatter plot of Estimated delivery ratio vs. gnd. truth

Effective SNR is also not very accurate

Error Burstiness across Frame

Assumes that interleaver uniformly distributes bit errors

- WiFi interleaver has a skewed distribution
- Error still bursty in WiFi interleaver

Delivery rate estimation must incorporate error burstiness

Problem Formulation

- Goal
 - To accurately predict delivery ratio using CSI information
- Options
 - 1. Analytical modeling
 - Hard for freq. selective channels.
 - 2. Simulate online
 - Prohibitively expensive
 - 3. Lookup table based approach
 - Pre compute delivery rate for error patterns
 - Error pattern capture the burstiness patterns
 - 4. Machine learning based approach
 - Use supervised learning to estimate delivery rate

Option 4. Machine Learning Approach

- Propose a machine learning based solution
- Motivation
 - Avoids the time and space complexity of lookup tables
 - Machine learning can provide faster online solution
- Machine learning algorithm
 - We chose Neural Networks

- Reason
 - Supports non-linear continuous functions
 - Appropriate for delivery ratio

Feature Set

- Feature Set
 - Use BER per subcarrier
- Advantage
 - Easy to obtain from CSI information
 - Allows de-coupling from the interleaver and modulation scheme
 - Feature size is limited by number of bits in OFDM symbol

Neural Network Operation

Intel Channel Traces
TGn Channel models

Delivery Ratio Accuracy (40MHz)

Use Cases

- Predict wireless performance [INFOCOM'16]
- Network test site selection and diagnosis [ICNP'17]
- Wireless Sensing [MobiCom'19]

Field Testing Process

Network wide roll-out can have contrasting performance impact due to different location characteristics

Test Site Selection

- Problem: How to select test sites to maximize early problem detection?
 - Low sampling rate
 - Other contexts: car crash test, medicine design
- Bayesian experiment design
- Greedy heuristic: Incrementally choose locations that diversify feature values $\forall j, Max(min_i(Hamming([n_i],n_j)))$
- Testing 1% nodes can identify major features that affect upgrade performance

Use Cases

- Predict wireless performance [INFOCOM'16]
- Network test site selection and diagnosis [ICNP'17]
- Wireless motion sensing [MobiCom'19]

Signal Processing is Not Enough

X is the ground truth position

Our Approach

Applying RNN

Network Architecture

Context Layer

• Consist of 5 neurons

	d	θ	$v \!\! \downarrow \!\! r$	vlt	a\r	a↓t
1	0.94	0.04	0.06	0.00	0.34	0.09
2	0.20	0.76	0.14	0.06	0.08	0.30
3	0.03	0.24	0.79	0.13	0.28	0.10
4	0.10	0.31	0.31	0.22	0.03	0.07
5	0.01	0.10	0.04	0.06	0.06	0.07

Detection Window

Use a local profile near the target

- Save training efforts
- Support multiple users
- Reduce computation cost

Data Augmentation

- Generate more training data with existing data
- Our framework is easy to augment data

Thank you!

lili@cs.utexas.edu