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Use Cases

* Predict wireless performance [INFOCOM’16]
* Network test site selection and diagnosis [ICNP’17]
* Wireless Sensing [MobiCom’19]
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Limitation of Average SNR

* Avg. SNR is widely used for delivery ratio estimation
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SNR is not a good predictor in Freq. Selective Channels
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Frequency Diversity

* Wireless channel are 30
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Effective SNR

 Effective SNR shows better results than Avg. SNR

* Approach
1. Map the SNR per subcarrier to BER
1
BERyrf i = Nsubsz BER,,(SNR;.)

2. Map BER,  back to Effective SNR

Peffk = BERlzl(BEReff,k)

3. Use Effective SNR to select the appropriate rate

How Accurate is Effective SNR? ‘




Effective SNR Accuracy

e Scatter plot of Estimated delivery ratio vs. gnd. truth

S o©o o o
oley Alealja@ yiniL pun

0.8

0.6

" EffSNR Delivery Ratio

KK

0.4

‘ Effective SNR is also not very accurate ‘




Error Burstiness across Frame

* Assumes that interleaver uniformly distributes bit errors
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Problem Formulation

* Goal
* To accurately predict delivery ratio using CSl information

* Options
1. Analytical modeling
 Hard for freq. selective channels.
2. Simulate online
 Prohibitively expensive
3. Lookup table based approach
* Pre compute delivery rate for error patterns
e Error pattern capture the burstiness patterns
4. Machine learning based approach
 Use supervised learning to estimate delivery rate



Option 4. Machine Learning Approach

* Propose a machine learning based solution

* Motivation
— Avoids the time and space complexity of lookup tables
— Machine learning can provide faster online solution

 Machine learning algorithm
— We chose Neural Networks

e Reason

— Supports non-linear continuous functions
— Appropriate for delivery ratio
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Feature Set

* Feature Set
e Use BER per subcarrier

* Advantage
e Easy to obtain from CSI information

* Allows de-coupling from the interleaver and modulation
scheme

* Feature size is limited by number of bits in OFDM symbol
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Neural Network Operation
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Delivery Ratio Accuracy (40MHz)
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Use Cases

* Predict wireless performance [INFOCOM’16]
* Network test site selection and diagnosis [ICNP’17]
* Wireless Sensing [MobiCom’19]



Field Testing Process
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Test Site Selection

* Problem: How to select test sites to maximize early problem detection?
* Low sampling rate
e Other contexts: car crash test, medicine design

e Bayesian experiment design

* Greedy heuristic: Incrementally choose locations that diversify feature values

V5, Maz(min;(Hamming([n;],n;)))

* Testing 1% nodes can identify major features that affect upgrade performance



Use Cases

* Predict wireless performance [INFOCOM’16]
* Network test site selection and diagnosis [ICNP’17]
* Wireless motion sensing [MobiCom’19]



Sighal Processing is Not Enough
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Our Approach

Target
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19



Applying RNN
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Network Architecture
Dist & AOA

Context info.

Prev. context Combine features

Extract features

Reduce the input size

2D profile
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Context Layer

* Consist of 5 neurons
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Detection Window

e Use a local profile near the target

Detection window




Data Augmentation

* Generate more training data with existing data
* Our framework is easy to augment data




Thank you!

lili@cs.utexas.edu



