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Limitation of Average SNR 
• Avg.	SNR	is	widely	used	for	delivery	ratio	estimation	

SNR	is	not	a	good	predictor	in	Freq.	Selective	Channels	
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Frequency Diversity 
• Wireless	channel	are	
frequency	selective	

•  Bandwidth	is	increasing	
with	new	standards	
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Due	to	frequency	diversity,	average	SNR	cannot	predict	wireless	
performance.		



Effective SNR 
•  Effective	SNR	shows	better	results	than	Avg.	SNR	
•  Approach	

1.  Map	the	SNR	per	subcarrier	to	BER	
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2.  Map	BEReff,k	back	to	Effective	SNR	
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3.  Use	Effective	SNR	to	select	the	appropriate	rate	

How	Accurate	is	Effective	SNR?	 6	



Effective SNR Accuracy 
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Effective	SNR	is	also	not	very	accurate	

•  Scatter	plot	of	Estimated	delivery	ratio	vs.	gnd.	truth	
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Error Burstiness across Frame 
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WiFi Interleaver
Ideal Interleaver

code	rate:	1/2	

•  Assumes	that	interleaver	uniformly	distributes	bit	errors	
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•  WiFi	interleaver	has	a	
skewed	distribution	

•  Error	still	bursty	in	WiFi	
interleaver	

65%	

Delivery	rate	estimation	must	incorporate	error	
burstiness	



• Goal	
•  To	accurately	predict	delivery	ratio	using	CSI	information	

Problem Formulation 

•  Options	
1.  Analytical	modeling	
•  Hard	for	freq.	selective	channels.		

2.  Simulate	online	
•  Prohibitively	expensive		

3.  Lookup	table	based	approach	
•  Pre	compute	delivery	rate	for	error	patterns	
•  Error	pattern	capture	the	burstiness	patterns	

4.  Machine	learning	based	approach	
•  Use	supervised	learning	to	estimate	delivery	rate	
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Option 4. Machine Learning Approach 

• Propose	a	machine	learning	based	solution	

•  Motivation	
–  Avoids	the	time	and	space	complexity	of	lookup	tables	
– Machine	learning	can	provide	faster	online	solution	

•  Machine	learning	algorithm	
– We	chose	Neural	Networks	

•  Reason	
–  Supports	non-linear	continuous	functions	
–  Appropriate	for	delivery	ratio	
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Feature Set 
•  Feature	Set	
•  Use	BER	per	subcarrier	

• Advantage	
•  Easy	to	obtain	from	CSI	information	
•  Allows	de-coupling	from	the	interleaver	and	modulation	
scheme	
•  Feature	size	is	limited	by	number	of	bits	in	OFDM	symbol	
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Neural Network Operation 

Neural	Network	 Network	
weights	

Training	

Intel	Channel	Traces	
TGn	Channel	models	

Bit-Error-Rate	
Delivery	Ratio	

Input	 Output	

Testing	

Trained	Network	 Delivery	
Ratio	

Bit-Error-Rate	

Input	 Output	
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Delivery Ratio Accuracy (40MHz) 
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EffSnr w/ WiFi Int.
EffSnr w/ Our Int.
Lookup w/ WiFi Int.
Lookup w/ Our Int.
ML. w/ WiFi Int.
ML. w/ Our Int.

EffSNR		
Wifi:	11%	
Our:	27%	
Lookup	
Wifi:	4.5%	
Our:	3%	

ML	
Wifi:	6%	
Our:	3%	

13	



Use Cases 

•  Predict wireless performance [INFOCOM’16] 
• Network test site selection and diagnosis [ICNP’17] 
• Wireless Sensing [MobiCom’19] 



Field Testing Process 
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Apply Upgrade (Trial) Analyze Performance Performance	looks	good.	Go	ahead	with	network-
wide	rollout	

Network	wide	roll-out	can	have	contrasting	performance	
impact	due	to	different	location	characteristics	



Test Site Selection 

•  Problem:	How	to	select	test	sites	to	maximize	early	problem	detection?	
•  Low	sampling	rate	
•  Other	contexts:	car	crash	test,	medicine	design	

•  Bayesian	experiment	design	

•  Greedy	heuristic:	Incrementally	choose	locations	that	diversify	feature	values	

•  Testing	1%	nodes	can	identify	major	features	that	affect	upgrade	performance	



Use Cases 

•  Predict wireless performance [INFOCOM’16] 
• Network test site selection and diagnosis [ICNP’17] 
• Wireless motion sensing [MobiCom’19] 



Signal Processing is Not Enough 
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X	is	the	ground	truth	position	



Our Approach 
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Signal	Proc.	 RNN	

RTrack	Received	
signals	

Target	
position	

Separate	target	
reflection	from	others	

Exploit	temporal	
relationship	



Applying RNN 
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(𝐝, 𝜽)	

Current	profile	

Recent	profiles	



Network Architecture 
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Context	info.	

Reduce	the	input	size	

Extract	features	

Combine	features	



Context Layer 

• Consist	of	5	neurons		
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𝒅	 𝜽	 ​𝒗↓𝒓 	 ​𝒗↓𝒕 	 ​𝒂↓𝒓 	 ​𝒂↓𝒕 	

1	 0.94	 0.04	 0.06	 0.00	 0.34	 0.09	

2	 0.20	 0.76	 0.14	 0.06	 0.08	 0.30	

3	 0.03	 0.24	 0.79	 0.13	 0.28	 0.10	

4	 0.10	 0.31	 0.31	 0.22	 0.03	 0.07	

5	 0.01	 0.10	 0.04	 0.06	 0.06	 0.07	



Detection Window 

• Use	a	local	profile	near	the	target		
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Isolate	environment	impacts	

Save	training	efforts	

Reduce	computation	cost	

Support	multiple	users	
Δ𝜃		

Δ𝑑		

( ​𝑑↓𝑏 , ​𝜃↓𝑏 )	

Detection	window	

(𝚫𝒅, 𝚫𝜽)+ ( ​𝒅↓𝒃 , ​𝜽↓𝒃 )	



Data Augmentation 

• Generate	more	training	data	with	existing	data	
• Our	framework	is	easy	to	augment	data	
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Thank you! 
lili@cs.utexas.edu	


