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Aspects of this work on Mobile SoCs and Gables were developed while 
the authors were “interns” with Google’s Mobile Silicon Group. Thanks! 
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Accelerator-level Parallelism 
Mark D. Hill  
University of Wisconsin-Madison 
  
Abstract: 
Computer system performance has improved due to creatively using more transistors (Moore’s Law) in parallel via bit-, instruction-, 
thread-, and data-level parallelism. With the slowing of technology scaling, the only known way to further improve computer system 
performance under energy constraints is to employ hardware accelerators. Each accelerator is a hardware component that executes a 
targeted computation class faster and usually with (much) less energy. Already today, many chips in mobile, edge and cloud computing 
concurrently employ multiple accelerators in what we call accelerator-level parallelism (ALP).  
 
This talk develops our hypothesis that ALP will spread to computer systems more broadly. ALP is a promising way to dramatically 
improve power-performance to enable broad, future use of deep AI, virtual reality, self-driving cars, etc. To this end, we review past 
parallelism levels and the ALP already present in mobile systems on a chip (SoCs). We then aid understanding of ALP with the Gables 
model and charge computer science researchers to develop better ALP “best practices” for: targeting accelerators, managing accelerator 
concurrency, choreographing inter-accelerator communication, and productively programming accelerators. This joint work with Vijay 
Janapa Reddi of Harvard is at: https://arxiv.org/abs/1907.02064 
  
Biography: 
Mark D. Hill (http://www.cs.wisc.edu/~markhill) is John P. Morgridge Professor and Gene M. Amdahl Professor of Computer Sciences at 
the University of Wisconsin-Madison, where he also has a courtesy appointment in Electrical and Computer Engineering. His research 
interests include parallel-computer system design, memory system design, and computer simulation. He received the 2019 Eckert-
Mauchly Award and is a fellow of IEEE and the ACM. He serves as Chair of the Computer Community Consortium (2018-19) and served 
as Wisconsin Computer Sciences Department Chair 2014-2017. Hill has a PhD in computer science from the University of California, 
Berkeley. 
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Future apps demand much more computing 
 

Standard tech scaling & architecture NOT sufficient 
 

Mobile SoCs show a promising approach: 
 

ALP = Parallelism among workload components 
concurrently executing on multiple accelerators (IPs) 
 

Call to action to develop “science” for ubiquitous ALP 

Accelerator-level Parallelism Call to Action 
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I.  Computer History & X-level Parallelism 

II.  Mobile SoCs as ALP Harbinger 

III.  Gables ALP SoC Model 

IV.  Call to Action for Accelerator-level Parallelism 
 

Outline 
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20th Century Information & Communication Technology 
Has Changed Our World 
•  <long list omitted> 
 
Required innovations in algorithms, applications, 
programming languages, … , & system software 
 
Key (invisible) enablers (cost-)performance gains 
•  Semiconductor technology (“Moore’s Law”) 
•  Computer architecture (~80x per Danowitz et al.) 
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Moore’s Law – 1965 Paper 
●  Optimal number of transistors 

per chip with increase with time 

●  Became self-fulfilling prophesy with 
doubling transistor count every 
~ two years 

●  Note that transistor gain in two years 
equals all past gain – the power 
of an exponential! 
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https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png 



Enablers: Technology + Architecture 
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Danowi' et al., CACM 04/2012	

Technology 

Architecture 



How did Architecture Exploit Moore’s Law? 

MORE (& faster) transistors è even faster computers 
 
Memory – transistors in parallel 
•  Vast semiconductor memory (DRAM) 
•  Cache hierarchy for fast memory illusion 

Processing – transistors in parallel 
Bit-, Instruction-, Thread-, & Data-level Parallelism 
 
Now  Accelerator-level Parallelism 
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X-level Parallelism in Computer Architecture 
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Bit-level Parallelism (BLP) 
Early computers:  few switches (transistors) 
•  è compute a result in many steps 
•  E.g., 1 multiplication partial product per cycle 
 
Bit-level parallelism 
•  More transistors è compute more in parallel 
•  E.g., Wallace Tree multiplier (right) 

Larger words help: 8bà16bà32bà64b 
 
Important: Easy for software 
 
NEW: Smaller word size, e.g. machine learning inference accelerators 12 



Instruction-level Parallelism (ILP) 
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Processors logically do instructions sequentially (timeà) 
add  

Predict direction: target or fall thru 

Actually do instructions in parallel è ILP 
add  

load  

branch  

and Speculate! 

store Speculate more! 

load  

E.g., Intel Skylake has 224-entry reorder buffer w/ 14-19-stage pipeline 

Important: Easy for software 

IBM Stretch [1961] 



X-level Parallelism in Computer Architecture 
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Thread-level Parallelism (TLP) 
Thread-level Parallelism 
•  HW: Multiple sequential processor cores 
•  SW: Each runs asynchronous thread 

SW must partition work, synchronize,  
& manage communication 
•  E.g. pThreads, OpenMP, MPI 

On-chip TLP called “multicore” – forced choice 
 

Less easy for software but 
•  More TLP in cloud than desktop à cloud!! 
•  Bifurcation: experts program TLP; others use it 
 
 
 
 
 
 
Desk hard + server (cloud) EZ è factor in comp to cloud 
 
Many use few program 
Old, Niagara pix 
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Intel Pentium Pro Extreme Edition, 
early 2000s 

CDC 6600, 1964, 
(TLP via multithreaded processor) 
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https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png 



X-level Parallelism in Computer Architecture 
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Data-level Parallelism (DLP) 
Need same operation on many data items 
Do with parallelism è DLP 
•  Array of single instruction multiple data (SIMD) 
•  Deep pipelines like Cray vector machines 
•  Intel-like Streaming SIMD Extensions (SSE) 

Broad DLP success awaited General-Purpose GPUs 
1.  Single Instruction Multiple Thread (SIMT) 
2.  SW (CUDA) & libraries (math & ML) 
3.  Experimentation as $1-10K not $1-10M 
 
Bifurcation again: experts program SIMT (TLP+DLP); others use it 

 
 
Pix: cray, cm-5, gpu 
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Illinois ILLIAC IV, 1966 

NVIDIA Tesla 



X-level Parallelism in Computer Architecture 
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X-level Parallelism in Computer Architecture 
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X-level Parallelism in Computer Architecture 
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I.  Computer History & X-level Parallelism 

II.  Mobile SoCs as ALP Harbinger 

III.  Gables ALP SoC Model 

IV.  Call to Action for Accelerator-level Parallelism 
 

Outline 
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X-level Parallelism in Computer Architecture 
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Mobile SoC HW 
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Potential for Specialized Accelerators (IPs) 
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[Brodersen & Meng, 2002] 

v 

v 

16 
Encryption 
17 
Hearing Aid 
18 
FIR for disk read 
19 
MPEG Encoder 
20 
802.11 Baseband 

Accelerator is a hardware component that executes a targeted 
computation class faster & usually with (much) less energy. 



CPU, GPU, xPU (i.e., Accelerators or IPs) 
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2019 Apple A12 w/ 42 accelerators  

42 Really? 
 
The Hitchhiker's 
Guide to the 
Galaxy? 
 



Example Usecase 
(recording 4K video) 
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Janapa Reddi, et al., 
IEEE Micro, Jan/Feb 2019 

ALP = Parallelism among workload components 
concurrently executing on multiple accelerators (IPs) 



Must run each usecase sufficiently fast -- no need faster 
A usecase uses IPs concurrently: more ALP than serial 
For each usecase, how much acceleration for each IP? 
 

Mobile SoCs Run Usecases 
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Accelerators (IPs) è 
 

Usecases (rows) 
CPUs 
(AP) Display Media 

Scaler GPU 
Image 
Signal 
Proc. 

JPEG 
Pixel 

Visual 
Core 

Video 
Decoder 

Video 
Encoder 

Dozens 
More 

Photo Enhancing X X X X X X 

Video Capture X X X X X 

Video Capture HDR X X X X X 

Video Playback X X X X X 

Image Recognition X X X X 



 
Envision usecases  
(2-3 years ahead) 
Select IPs 
Size IPs 
Design Uncore 
 
 
 
 

Which accelerators? How big? How to even start?  
 

Mobile SoCs Hard To Design 
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Envision usecases  
(years ahead) 
Port to many SoCs?? 
 
Diversity hinders use 
[Facebook, HPCA’19] 
 
What SoC abstraction 
should SW use?  

Mobile SoCs Hard To Program For and Select 
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I.  Computer History & X-level Parallelism 

II.  Mobile SoCs as ALP Harbinger 

III.  Gables ALP SoC Model (ok to get lost) 

IV.  Call to Action for Accelerator-level Parallelism 
 

Outline 
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Computer Architecture & Models 
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Multiprocessor & 
Amdahl’s Law 

Multicore & 
Roofline 

Insight  

Accuracy 
Effort  

Models vs Simulation 
●  More insight 
●  Less effort 
●  But less accuracy 

Models give first answer, not final answer 
Gables extends Roofline è first answer for SoC ALP 



Multicore HW 
•  Ppeak = peak perf of all cores 
•  Bpeak = peak off-chip bandwidth 
 
Multicore SW 
•  I = operational intensity = #operations/#off-chip-bytes 
•  E.g., 2 ops / 16 bytes à I = 1/8 
 
Output Patt = upper bound on performance attainable 
 
 

Roofline for Multicore Chips, 2009 
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Roofline for Multicore Chips, 2009 
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Source: https://commons.wikimedia.org/wiki/
File:Example_of_a_naive_Roofline_model.svg 

Ppeak 

Bpeak* I  

(I) 

(Patt)  

Compute v. Communication: Op. Intensity (I) = #operations / #off-chip bytes 



ALP System on Chip (SoC) Model:  

Gables uses Roofline per IP to provide first answer! 
•  HW: select & size accelerators 
•  SW: optimize for a “gabled roof?”  
  
 

NEW Gables 
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2019 Apple A12 w/ 42 accelerators  



Gables for N IP SoC 
A0 = 1 

A0*Ppeak 

B0 

CPUs 
IP[0] 

← Share off-chip Bpeak → 
 

 
A1*Ppeak 

B1 

IP[1] 

 
AN-1*Ppeak 

BN-1 

IP[N-1] 
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Usecase at each IP[i] 
•  Operational intensity Ii operations/byte 
•  Non-negative work fi (fi’s sum to 1) w/ IPs in parallel 

 



Example Balanced Design Start w/ Gables 
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DRAM 

IP[0] 
CPUs 

Bpeak = 10 
 

TWO-IP SoC 

IP[1] 
GPU 

Ppeak = 40 
 

A1*Ppeak = 5*40 = 200 

B0 = 6 
 

B1 = 15 
 

Workload (Usecase): 
 

f0 = 1 & f1 = 0  
I0 = 8 = good caching 
I1 = 0.1 = latency tolerant 
 

Performance?  
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Perf limited by IP[0] at I0 = 8 
I[1] not used à no roofline 
Let’s Assign IP[1] work: f1 = 0 à 0.75 

Ppeak = 40 
Bpeak = 10 

A1 = 5 
B0 = 6 

B1 = 15 
 

f1 = 0 
I0 = 8 

I1 = 0.1 
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IP[1] present but Perf drops to 1! Why? 
I1 = 0.1 à memory bottleneck 
Enhance Bpeak = 10 à 30 
(at a cost) 

Ppeak = 40 
Bpeak = 10 

A1 = 5 
B0 = 6 

B1 = 15 
 

f1 = 0.75 
I0 = 8 

I1 = 0.1 
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Perf only 2 with IP[1] bottleneck 
 

IP[1] SRAM/reuse I1 = 0.1 à 8 
Reduce overkill Bpeak = 30 à 20 

Ppeak = 40 
Bpeak = 30 

A1 = 5 
B0 = 6 

B1 = 15 
 

f1 = 0.75 
I0 = 8 

I1 = 0.1 
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Perf = 160 < A*Ppeak = 200 
Can you do better? 
It’s possible! 

Ppeak = 40 
Bpeak = 20 

A1 = 5 
B0 = 6 

B1 = 15 
 

f1 = 0.75 
I0 = 8 
I1 = 8 
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Usecases using K accelerators à 
 

Gables has K+1 rooflines 



Model 
Extensions 

 

Interactive tool 
 
 

Gables Android Source at GitHub 
 
 

http://research.cs.wisc.edu/multifacet/gables/ 
 
 

Gables Home Page 
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       CPUs                               GPU      DSP (SCALAR)  
Ppeak = 7.5 GF                     AGPU = 47                    ADSP-SCALAR = 0.40 

µBenchmark w/ Qualcomm SnapdragonTM 835 
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•  All elements load from array & vary FP SP op intensity 
•  Finds empirical lower bound on rooflines 

•  Preliminary evidence that multiple rooflines useful 



Case Study: Allocating SRAM 

Where SRAM? 

●  Private w/i each IP 
●  Shared resource 

 

SHARED 

IP0 

IP1 

IP2 
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What determines Ii? 

Hardware 

More Ai toward BW-bound (recall fi too!) 

More Bi toward compute-bound 

More Mi toward compute-bound if reuse 

Whither Ii as function of Mi? 

SW Usecase (most important) 

●  Dense v. sparse matrices 
●  E.g. vision v. audio ML 

 

 
Ai*Ppeak 

Bi 

IP[i] 

Mi 

Compute 
-bound Ii 

BW -
bound Ii 

Ii 

 Patt 

45 



Does more IP[i] SRAM help Op. Intensity (Ii)? 

Non-linear function that increases when new footprint/working-set fits 

Should consider these plots when sizing IP[i] SRAM 

Later evaluation can use simulation performance on y-axis 
 

Ii 

IP[i] SRAM 

Not 
much 

fits 

Small 
W/S 
 fits Med. 

W/S 
fits 

Large 
W/S 
fits 

W/S = working set 
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Compute v. Communication: Op. Intensity (I) = #operations / #off-chip bytes 



HW: IP[i] under/over-provisioned for BW or acceleration?  
SW: Map usecase toIP’s w/ many BWs & acceleration 
Gables is perhaps a first answer, but not a final answer 
  
 

Mobile System on Chip (SoC) & Gables 
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2019 Apple A12 w/ 42 accelerators  



I.  Computer History & X-level Parallelism 

II.  Mobile SoCs as ALP Harbinger 

III.  Gables ALP SoC Model 

IV.  Call to Action for Accelerator-level Parallelism 
 

Outline 
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Future Apps Demand Much More Computing 
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Future apps demand much more computing 
 

Standard tech scaling & architecture NOT sufficient 
 

Mobile SoCs show a promising approach: 
 

ALP = Parallelism among workload components 
concurrently executing on multiple accelerators (IPs) 
 

Call to action to develop “science” for ubiquitous ALP 
•  It’s the SW stupid! 
•  What SW (model) for a gabled-roof SoC? 

Accelerator-level Parallelism Call to Action 
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X-level Parallel Hardware + Software (Model) 
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Single-threaded 
languages, 
compilers, 

runtimes, etc. 
hides parallelism 

 

IBM Power 7 
BLP+ILP+TLP 

Nvidia GK110 
BLP+TLP+DLP 

Apple A12 
BLP+ILP+TLP+DLP+ALP 

Intel Pentium Pro 
BLP+ILP 

Software 
abstracts TLP, 
e.g., pThreads, 

OpenMP, & MPI. 
Also hidden in 

cloud, etc. 

Software abstracts 
TLP+DLP, e.g., 

CUDA, OpenCL, & 
graphics OpenGL 

Also hidden in 
cloud, etc. 

 

Local software stack 
abstracts each 

accelerator. 
But no good, general 
software abstraction 

for SoC ALP! 
 



A Parallelism Lattice 
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Challenges 
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#1: Accelerator 
Design Space 

#4: Accelerator 
Programmability 

#3: Accelerator 
Communication 

#2: Accelerator 
Concurrency 



What is the “right” set of accelerators? For HW? For SW? 
 
When should “similar” accelerators be combined? 
 
When should accelerators share resources (e.g., SRAM)? 
 
How to future-proof for change (e.g., machine learning)? 
 
How should tools/frameworks speed accelerator design? 

#1: Accelerator Design Space 
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How to cooperatively schedule accelerators? 
By OS or runtime? As devices or processor peers? What 
HW mechanisms? Note: GPU tasks use runtime & HW 
 
Policies/mechanisms manage/partition/virtualize shared 
resources (compute, cache/memory, interconnect)? 
 
Whither OS/runtime Hardware Abstraction Layer (HAL)? 
What should HALs hide/expose? 

#2: Accelerator Concurrency 
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How do accelerators communicate data? Through 
memory, shared cache, queues, scratchpads? #copies? 
Abstraction(s)? Stream dataflow? Idempotent (RDDs)? 
 
Note: GPU memory: discreteàsharedàcoherent 
 
How do accelerators communicate control? Through interrupts 
or polling (both bad) Via CPUs? Other? 

 
Separate or unified drivers?  
 

#3: Accelerator Communication 
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Each accelerator has domain-specific language (DSL) w/ 
SDK, JIT, runtime, etc.?  Phone è more generally? 
 

Unify multiple accelerator SW “stacks” somehow? 
 

Tools/frameworks to speed SW development? 
“SW is behind HW” true since 1940s if new SW required 
 

#1-4 needed to delivery ubiquitous ALP to future apps! 
 

Do for ALP what SIMT/runtimes did for GPU TLP+DLP! 
 

#4: Accelerator Programmability 
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1.  Look for change – gives fresh opportunity 
è ALP applications, software, & hardware will explode 

 

Picking Research Problems & ALP 
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2. If you can do it, 
people will care 

3. You can do 
(some of) it 

è True for general ALP  Must answer for yourself! 



Future apps demand much more computing 
 

Standard tech scaling & architecture NOT sufficient 
 

Mobile SoCs show most/only promising approach: 
 

ALP = Parallelism among workload components 
concurrently executing on multiple accelerators (IPs) 
 

Call to action to develop “science” for ubiquitous ALP 
 
Hennessy & Patterson: A New Golden Age for Computer Architecture 

Accelerator-level Parallelism Call to Action 
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Science 



Backup Slides 
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The	mission	of	Compu+ng	Research	Associa+on's	Compu+ng	Community	Consor+um	(CCC)	is	to	
catalyze	the	compu+ng	research	community	and	enable	the	pursuit	of	innova+ve,	high-impact	
research.		

COMPUTING COMMUNITY CONSORTIUM 

Who	
•  Council	~24	members	
•  CCC/CRA	Staff	
•  Chair,	VC,	&	Director	

Inputs:	BoCom-up,	Internal,	&	Top-Down	
	

What:		
•  Workshops	&	Conf.	Blue	Sky	Tracks	
•  Whitepapers	&	Social	Media	
•  Reports	Out	(esp.	to	government)	
•  Biannual	Symposium	to	DCers	
	

Human	Development	
•  Early	Career	Workshops	&	Par*cipa*on	
•  Council	Membership	
•  Leadership	w/	Gov’t	(LISPI)	

National
Priorities

Agency
Requests

Open
Visioning

Calls

Blue Sky
Ideas

Reports  •  White Papers
Roadmaps  •  New Leaders

Public Funding 
Agencies

Science Policy 
Leadership

Computing Research Community 

Council-Led
Workshops

Community
Visioning

61	

point successes, lacking SW/HW science point successes, lacking SW/HW science 
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IPs should target important workloads, but … 
 

Pitfall X: Design for (Hyped) Importance 

Recommend: Provision 
IP resources (compute & 
SRAM) only as needed 
for important usecases 

Gartner 



Roofline:       MIN(Bpeak * I, Ppeak) 
                     MIN(Bpeak * I, 1 * Ppeak)   /   1 
 
1 / TIP[i]      =  MIN(Bi * Ii, Ai * Ppeak)   /   fi            fi ≠ 0 
 
1 / Tmemory   =  Bpeak * Iavg            Iavg = 1 / Σi=1,N-1(fi / Ii) 
 
Perf =  MIN(1/TIP[0] , …1/TIP[N-1], 1/Tmemory)     
 

Gables Math: Roofline / Work Fraction 
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