
Accelerator-level Parallelism

Mark D. Hill, Wisconsin & Vijay Janapa Reddi, Harvard

@ Yale University, September 2019

1

Aspects of this work on Mobile SoCs and Gables were developed while
the authors were “interns” with Google’s Mobile Silicon Group. Thanks!

2

Accelerator-level Parallelism
Mark D. Hill
University of Wisconsin-Madison

Abstract:
Computer system performance has improved due to creatively using more transistors (Moore’s Law) in parallel via bit-, instruction-,
thread-, and data-level parallelism. With the slowing of technology scaling, the only known way to further improve computer system
performance under energy constraints is to employ hardware accelerators. Each accelerator is a hardware component that executes a
targeted computation class faster and usually with (much) less energy. Already today, many chips in mobile, edge and cloud computing
concurrently employ multiple accelerators in what we call accelerator-level parallelism (ALP).

This talk develops our hypothesis that ALP will spread to computer systems more broadly. ALP is a promising way to dramatically
improve power-performance to enable broad, future use of deep AI, virtual reality, self-driving cars, etc. To this end, we review past
parallelism levels and the ALP already present in mobile systems on a chip (SoCs). We then aid understanding of ALP with the Gables
model and charge computer science researchers to develop better ALP “best practices” for: targeting accelerators, managing accelerator
concurrency, choreographing inter-accelerator communication, and productively programming accelerators. This joint work with Vijay
Janapa Reddi of Harvard is at: https://arxiv.org/abs/1907.02064

Biography:
Mark D. Hill (http://www.cs.wisc.edu/~markhill) is John P. Morgridge Professor and Gene M. Amdahl Professor of Computer Sciences at
the University of Wisconsin-Madison, where he also has a courtesy appointment in Electrical and Computer Engineering. His research
interests include parallel-computer system design, memory system design, and computer simulation. He received the 2019 Eckert-
Mauchly Award and is a fellow of IEEE and the ACM. He serves as Chair of the Computer Community Consortium (2018-19) and served
as Wisconsin Computer Sciences Department Chair 2014-2017. Hill has a PhD in computer science from the University of California,
Berkeley.

COMPUTING COMMUNITY CONSORTIUM (CCC):
CATALYZING I.T.’S VIRTUOUS CYCLE

Academia	

Ci*zens	

Government	Industry	

Get	involved	w/	white	papers,	workshops,	&	advoca*ng	I.T.	research	
(to	do	good	&	make	your	research	beCer)		

Future apps demand much more computing

Standard tech scaling & architecture NOT sufficient

Mobile SoCs show a promising approach:

ALP = Parallelism among workload components
concurrently executing on multiple accelerators (IPs)

Call to action to develop “science” for ubiquitous ALP

Accelerator-level Parallelism Call to Action

4

I.  Computer History & X-level Parallelism

II.  Mobile SoCs as ALP Harbinger

III.  Gables ALP SoC Model

IV.  Call to Action for Accelerator-level Parallelism

Outline

5

20th Century Information & Communication Technology
Has Changed Our World
•  <long list omitted>

Required innovations in algorithms, applications,
programming languages, … , & system software

Key (invisible) enablers (cost-)performance gains
•  Semiconductor technology (“Moore’s Law”)
•  Computer architecture (~80x per Danowitz et al.)

6

Moore’s Law – 1965 Paper
●  Optimal number of transistors

per chip with increase with time

●  Became self-fulfilling prophesy with
doubling transistor count every
~ two years

●  Note that transistor gain in two years
equals all past gain – the power
of an exponential!

8
https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png

Enablers: Technology + Architecture

9

Danowi' et al., CACM 04/2012	

Technology

Architecture

How did Architecture Exploit Moore’s Law?

MORE (& faster) transistors è even faster computers

Memory – transistors in parallel
•  Vast semiconductor memory (DRAM)
•  Cache hierarchy for fast memory illusion

Processing – transistors in parallel
Bit-, Instruction-, Thread-, & Data-level Parallelism

Now Accelerator-level Parallelism

10

X-level Parallelism in Computer Architecture

11

P

$

M

bus

i/f

dev

1 CPU

BLP+ILP
Bit/Instrn-Level

Parallelism

Bit-level Parallelism (BLP)
Early computers: few switches (transistors)
•  è compute a result in many steps
•  E.g., 1 multiplication partial product per cycle

Bit-level parallelism
•  More transistors è compute more in parallel
•  E.g., Wallace Tree multiplier (right)

Larger words help: 8bà16bà32bà64b

Important: Easy for software

NEW: Smaller word size, e.g. machine learning inference accelerators 12

Instruction-level Parallelism (ILP)

13

Processors logically do instructions sequentially (timeà)
add

Predict direction: target or fall thru

Actually do instructions in parallel è ILP
add

load

branch

and Speculate!

store Speculate more!

load

E.g., Intel Skylake has 224-entry reorder buffer w/ 14-19-stage pipeline

Important: Easy for software

IBM Stretch [1961]

X-level Parallelism in Computer Architecture

14

P

$

M

bus

i/f

dev

1 CPU Multiprocessor

BLP+ILP + TLP
Thread-Level
Parallelism

Bit/Instrn-Level
Parallelism

Thread-level Parallelism (TLP)
Thread-level Parallelism
•  HW: Multiple sequential processor cores
•  SW: Each runs asynchronous thread

SW must partition work, synchronize,
& manage communication
•  E.g. pThreads, OpenMP, MPI

On-chip TLP called “multicore” – forced choice

Less easy for software but
•  More TLP in cloud than desktop à cloud!!
•  Bifurcation: experts program TLP; others use it

Desk hard + server (cloud) EZ è factor in comp to cloud

Many use few program
Old, Niagara pix

15

Intel Pentium Pro Extreme Edition,
early 2000s

CDC 6600, 1964,
(TLP via multithreaded processor)

16
https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png

X-level Parallelism in Computer Architecture

17

P

$

M

bus

i/f

dev

1 CPU Multicore

BLP+ILP + TLP
Bit/Instrn-Level

Parallelism
Thread-Level
Parallelism

Data-level Parallelism (DLP)
Need same operation on many data items
Do with parallelism è DLP
•  Array of single instruction multiple data (SIMD)
•  Deep pipelines like Cray vector machines
•  Intel-like Streaming SIMD Extensions (SSE)

Broad DLP success awaited General-Purpose GPUs
1.  Single Instruction Multiple Thread (SIMT)
2.  SW (CUDA) & libraries (math & ML)
3.  Experimentation as $1-10K not $1-10M

Bifurcation again: experts program SIMT (TLP+DLP); others use it

Pix: cray, cm-5, gpu

18

Illinois ILLIAC IV, 1966

NVIDIA Tesla

X-level Parallelism in Computer Architecture

19

P

$

M

bus

i/f

dev

1 CPU Multicore

GPU

dev-M

+  Discrete GPU

BLP+ILP + TLP + DLP
Data-Level
Parallelism

Bit/Instrn-Level
Parallelism

Thread-Level
Parallelism

X-level Parallelism in Computer Architecture

20

P

$

M

bus

i/f

dev

1 CPU Multicore

GPU

+  Integrated GPU

BLP+ILP + TLP + DLP
Data-Level
Parallelism

Bit/Instrn-Level
Parallelism

Thread-Level
Parallelism

X-level Parallelism in Computer Architecture

21

I.  Computer History & X-level Parallelism

II.  Mobile SoCs as ALP Harbinger

III.  Gables ALP SoC Model

IV.  Call to Action for Accelerator-level Parallelism

Outline

22

X-level Parallelism in Computer Architecture

23

P

$

M

bus

i/f

dev

1 CPU Multicore

GPU

+  Integrated GPU
System on a Chip

(SoC)
BLP+ILP + TLP + DLP

Data-Level
Parallelism

Bit/Instrn-Level
Parallelism

Thread-Level
Parallelism

+ ALP
Accelerator-Level

Parallelism

Mobile SoC HW

24

Potential for Specialized Accelerators (IPs)

25

[Brodersen & Meng, 2002]

v

v

16
Encryption
17
Hearing Aid
18
FIR for disk read
19
MPEG Encoder
20
802.11 Baseband

Accelerator is a hardware component that executes a targeted
computation class faster & usually with (much) less energy.

CPU, GPU, xPU (i.e., Accelerators or IPs)

26
2019 Apple A12 w/ 42 accelerators

42 Really?

The Hitchhiker's
Guide to the
Galaxy?

Example Usecase
(recording 4K video)

27

Janapa Reddi, et al.,
IEEE Micro, Jan/Feb 2019

ALP = Parallelism among workload components
concurrently executing on multiple accelerators (IPs)

Must run each usecase sufficiently fast -- no need faster
A usecase uses IPs concurrently: more ALP than serial
For each usecase, how much acceleration for each IP?

Mobile SoCs Run Usecases

28

Accelerators (IPs) è

Usecases (rows)
CPUs
(AP) Display Media

Scaler GPU
Image
Signal
Proc.

JPEG
Pixel

Visual
Core

Video
Decoder

Video
Encoder

Dozens
More

Photo Enhancing X X X X X X

Video Capture X X X X X

Video Capture HDR X X X X X

Video Playback X X X X X

Image Recognition X X X X

Envision usecases
(2-3 years ahead)
Select IPs
Size IPs
Design Uncore

Which accelerators? How big? How to even start?

Mobile SoCs Hard To Design

29

Envision usecases
(years ahead)
Port to many SoCs??

Diversity hinders use
[Facebook, HPCA’19]

What SoC abstraction
should SW use?

Mobile SoCs Hard To Program For and Select

30

I.  Computer History & X-level Parallelism

II.  Mobile SoCs as ALP Harbinger

III.  Gables ALP SoC Model (ok to get lost)

IV.  Call to Action for Accelerator-level Parallelism

Outline

31

Computer Architecture & Models

32

Multiprocessor &
Amdahl’s Law

Multicore &
Roofline

Insight

Accuracy
Effort

Models vs Simulation
●  More insight
●  Less effort
●  But less accuracy

Models give first answer, not final answer
Gables extends Roofline è first answer for SoC ALP

Multicore HW
•  Ppeak = peak perf of all cores
•  Bpeak = peak off-chip bandwidth

Multicore SW
•  I = operational intensity = #operations/#off-chip-bytes
•  E.g., 2 ops / 16 bytes à I = 1/8

Output Patt = upper bound on performance attainable

Roofline for Multicore Chips, 2009

33

Roofline for Multicore Chips, 2009

34

Source: https://commons.wikimedia.org/wiki/
File:Example_of_a_naive_Roofline_model.svg

Ppeak

Bpeak* I

(I)

(Patt)

Compute v. Communication: Op. Intensity (I) = #operations / #off-chip bytes

ALP System on Chip (SoC) Model:

Gables uses Roofline per IP to provide first answer!
•  HW: select & size accelerators
•  SW: optimize for a “gabled roof?”

NEW Gables

35

2019 Apple A12 w/ 42 accelerators

Gables for N IP SoC
A0 = 1

A0*Ppeak

B0

CPUs
IP[0]

← Share off-chip Bpeak →

A1*Ppeak

B1

IP[1]

AN-1*Ppeak

BN-1

IP[N-1]

36

Usecase at each IP[i]
•  Operational intensity Ii operations/byte
•  Non-negative work fi (fi’s sum to 1) w/ IPs in parallel

Example Balanced Design Start w/ Gables

37

DRAM

IP[0]
CPUs

Bpeak = 10

TWO-IP SoC

IP[1]
GPU

Ppeak = 40

A1*Ppeak = 5*40 = 200

B0 = 6

B1 = 15

Workload (Usecase):

f0 = 1 & f1 = 0
I0 = 8 = good caching
I1 = 0.1 = latency tolerant

Performance?

38

Perf limited by IP[0] at I0 = 8
I[1] not used à no roofline
Let’s Assign IP[1] work: f1 = 0 à 0.75

Ppeak = 40
Bpeak = 10

A1 = 5
B0 = 6

B1 = 15

f1 = 0
I0 = 8

I1 = 0.1

38

39

IP[1] present but Perf drops to 1! Why?
I1 = 0.1 à memory bottleneck
Enhance Bpeak = 10 à 30
(at a cost)

Ppeak = 40
Bpeak = 10

A1 = 5
B0 = 6

B1 = 15

f1 = 0.75
I0 = 8

I1 = 0.1

39

40

Perf only 2 with IP[1] bottleneck

IP[1] SRAM/reuse I1 = 0.1 à 8
Reduce overkill Bpeak = 30 à 20

Ppeak = 40
Bpeak = 30

A1 = 5
B0 = 6

B1 = 15

f1 = 0.75
I0 = 8

I1 = 0.1

40

41

Perf = 160 < A*Ppeak = 200
Can you do better?
It’s possible!

Ppeak = 40
Bpeak = 20

A1 = 5
B0 = 6

B1 = 15

f1 = 0.75
I0 = 8
I1 = 8

41

Usecases using K accelerators à

Gables has K+1 rooflines

Model
Extensions

Interactive tool

Gables Android Source at GitHub

http://research.cs.wisc.edu/multifacet/gables/

Gables Home Page

42

 CPUs GPU DSP (SCALAR)
Ppeak = 7.5 GF AGPU = 47 ADSP-SCALAR = 0.40

µBenchmark w/ Qualcomm SnapdragonTM 835

43

•  All elements load from array & vary FP SP op intensity
•  Finds empirical lower bound on rooflines

•  Preliminary evidence that multiple rooflines useful

Case Study: Allocating SRAM

Where SRAM?

●  Private w/i each IP
●  Shared resource

SHARED

IP0

IP1

IP2

44

What determines Ii?

Hardware

More Ai toward BW-bound (recall fi too!)

More Bi toward compute-bound

More Mi toward compute-bound if reuse

Whither Ii as function of Mi?

SW Usecase (most important)

●  Dense v. sparse matrices
●  E.g. vision v. audio ML

Ai*Ppeak

Bi

IP[i]

Mi

Compute
-bound Ii

BW -
bound Ii

Ii

 Patt

45

Does more IP[i] SRAM help Op. Intensity (Ii)?

Non-linear function that increases when new footprint/working-set fits

Should consider these plots when sizing IP[i] SRAM

Later evaluation can use simulation performance on y-axis

Ii

IP[i] SRAM

Not
much

fits

Small
W/S
 fits Med.

W/S
fits

Large
W/S
fits

W/S = working set

46

Compute v. Communication: Op. Intensity (I) = #operations / #off-chip bytes

HW: IP[i] under/over-provisioned for BW or acceleration?
SW: Map usecase toIP’s w/ many BWs & acceleration
Gables is perhaps a first answer, but not a final answer

Mobile System on Chip (SoC) & Gables

47

2019 Apple A12 w/ 42 accelerators

I.  Computer History & X-level Parallelism

II.  Mobile SoCs as ALP Harbinger

III.  Gables ALP SoC Model

IV.  Call to Action for Accelerator-level Parallelism

Outline

48

Future Apps Demand Much More Computing

49

Future apps demand much more computing

Standard tech scaling & architecture NOT sufficient

Mobile SoCs show a promising approach:

ALP = Parallelism among workload components
concurrently executing on multiple accelerators (IPs)

Call to action to develop “science” for ubiquitous ALP
•  It’s the SW stupid!
•  What SW (model) for a gabled-roof SoC?

Accelerator-level Parallelism Call to Action

50

X-level Parallel Hardware + Software (Model)

51

Single-threaded
languages,
compilers,

runtimes, etc.
hides parallelism

IBM Power 7
BLP+ILP+TLP

Nvidia GK110
BLP+TLP+DLP

Apple A12
BLP+ILP+TLP+DLP+ALP

Intel Pentium Pro
BLP+ILP

Software
abstracts TLP,
e.g., pThreads,

OpenMP, & MPI.
Also hidden in

cloud, etc.

Software abstracts
TLP+DLP, e.g.,

CUDA, OpenCL, &
graphics OpenGL

Also hidden in
cloud, etc.

Local software stack
abstracts each

accelerator.
But no good, general
software abstraction

for SoC ALP!

A Parallelism Lattice

52

Challenges

53

#1: Accelerator
Design Space

#4: Accelerator
Programmability

#3: Accelerator
Communication

#2: Accelerator
Concurrency

What is the “right” set of accelerators? For HW? For SW?

When should “similar” accelerators be combined?

When should accelerators share resources (e.g., SRAM)?

How to future-proof for change (e.g., machine learning)?

How should tools/frameworks speed accelerator design?

#1: Accelerator Design Space

54

How to cooperatively schedule accelerators?
By OS or runtime? As devices or processor peers? What
HW mechanisms? Note: GPU tasks use runtime & HW

Policies/mechanisms manage/partition/virtualize shared
resources (compute, cache/memory, interconnect)?

Whither OS/runtime Hardware Abstraction Layer (HAL)?
What should HALs hide/expose?

#2: Accelerator Concurrency

55

How do accelerators communicate data? Through
memory, shared cache, queues, scratchpads? #copies?
Abstraction(s)? Stream dataflow? Idempotent (RDDs)?

Note: GPU memory: discreteàsharedàcoherent

How do accelerators communicate control? Through interrupts
or polling (both bad) Via CPUs? Other?

Separate or unified drivers?

#3: Accelerator Communication

56

Each accelerator has domain-specific language (DSL) w/
SDK, JIT, runtime, etc.? Phone è more generally?

Unify multiple accelerator SW “stacks” somehow?

Tools/frameworks to speed SW development?
“SW is behind HW” true since 1940s if new SW required

#1-4 needed to delivery ubiquitous ALP to future apps!

Do for ALP what SIMT/runtimes did for GPU TLP+DLP!

#4: Accelerator Programmability

57

1.  Look for change – gives fresh opportunity
è ALP applications, software, & hardware will explode

Picking Research Problems & ALP

58

2. If you can do it,
people will care

3. You can do
(some of) it

è True for general ALP Must answer for yourself!

Future apps demand much more computing

Standard tech scaling & architecture NOT sufficient

Mobile SoCs show most/only promising approach:

ALP = Parallelism among workload components
concurrently executing on multiple accelerators (IPs)

Call to action to develop “science” for ubiquitous ALP

Hennessy & Patterson: A New Golden Age for Computer Architecture

Accelerator-level Parallelism Call to Action

59

Science

Backup Slides

60

The	mission	of	Compu+ng	Research	Associa+on's	Compu+ng	Community	Consor+um	(CCC)	is	to	
catalyze	the	compu+ng	research	community	and	enable	the	pursuit	of	innova+ve,	high-impact	
research.		

COMPUTING COMMUNITY CONSORTIUM

Who	
•  Council	~24	members	
•  CCC/CRA	Staff	
•  Chair,	VC,	&	Director	

Inputs:	BoCom-up,	Internal,	&	Top-Down	
	

What:		
•  Workshops	&	Conf.	Blue	Sky	Tracks	
•  Whitepapers	&	Social	Media	
•  Reports	Out	(esp.	to	government)	
•  Biannual	Symposium	to	DCers	
	

Human	Development	
•  Early	Career	Workshops	&	Par*cipa*on	
•  Council	Membership	
•  Leadership	w/	Gov’t	(LISPI)	

National
Priorities

Agency
Requests

Open
Visioning

Calls

Blue Sky
Ideas

Reports • White Papers
Roadmaps • New Leaders

Public Funding
Agencies

Science Policy
Leadership

Computing Research Community

Council-Led
Workshops

Community
Visioning

61	

point successes, lacking SW/HW science point successes, lacking SW/HW science

62

IPs should target important workloads, but …

Pitfall X: Design for (Hyped) Importance

Recommend: Provision
IP resources (compute &
SRAM) only as needed
for important usecases

Gartner

Roofline: MIN(Bpeak * I, Ppeak)
 MIN(Bpeak * I, 1 * Ppeak) / 1

1 / TIP[i] = MIN(Bi * Ii, Ai * Ppeak) / fi fi ≠ 0

1 / Tmemory = Bpeak * Iavg Iavg = 1 / Σi=1,N-1(fi / Ii)

Perf = MIN(1/TIP[0] , …1/TIP[N-1], 1/Tmemory)

Gables Math: Roofline / Work Fraction

63

