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What is Network Telemetry?

Data analytics on the collector
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Importance of Data Analytics for Network Telemetry

-

Performance Utilization

Network

Telemetry
99.999%

Avalilability Security



Challenges of Data Analytics for Network Telemetry

A variety of network-specific,
real-time analytics

Many detailed data
from heterogeneous sources




Challenge 1: Scalability
to Many detailed Data



Every Flow Matters

Transient loop/blackhole Fine-grained traffic analysis
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e 10-100K flows per device * 10K-100K devices

FlowRadar (NSDI16)



Every Packet Matters

4x10°

e Tail latency problems everywhere 35x10° [ Burst_40ms 00t tT
. 6 - é dI"j ot
— Terasort 200 GB on 20 servers on EC2 % gi:gs ettt
- 6 |
— 6.2K connections s | 2 ACK for the burst
B . : S IxI0® Seq
Flows with 99.9 percentile latency 500000 | Ak
* Delayed ACK, RTO, packet losses, 00 200 400 600 800
* slow start, fast recovery etc. Time (ms)

— Cannot predict which flow/packet sees which problem
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Solution: Improving Scalability

 Compress data with sketches
— E.g., UniMon, FlowRadar, NitroSketch, SketchVisor, etc.

* Adapt data collection based on queries
— E.g., OpenSketch, DREAM, EverFlow, Sonata etc.

* Challenge: Divide analytics between data sources and the collector
— Limited processing speed relative to traffic rate

Collector

/f \ — Limited network to transfer the data

,
— — Various programmability, computing, memory




Challenge 2: Real-time



Capture Fine Time Scale Events

Detecting Transient
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Packet-level Events in Sub-milliseconds
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Fine Timescale Events across the Network

Detecting Attack
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Capture and Analyze Events in Real-time

* Real-time detection means capital savings

— A DDoS attack could cost an enterprise more than $2 million [Kaspersky
Lab’s IT Security Risks Survey]

— AWS provides 30% refund for anything below 99.0% uptime

* Fast reaction to real-time events
— Fast failure localization and recovery
— Fast traffic engineering and congestion control
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Solution: Analytics in Real-time

* |In data plane control loop -~ Qi P o o
— In data plane event capturing: e.g., INT K

— In data plane prediction and reaction  adustngflow
rates per ACK

* Challenge: Sender e {A!K Receiver

— How to speed up analytics to sub-milliseconds HPCC (SIGCOMM'19)

— Or compile analytics down to the data plane

NPU FPGA 14



Challenge 3: Diverse Data Sources
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Diverse Network Data in the Complex Networks

Physical network
— Servers: Pingmesh, NetBouncer, sFlow, etc.

— Switches: SNMP, Syslog, NetFlow, packet traces, loss rate, interface
counter

Other network layers

— Routing, traffic enginering, load balancing, firewalls

Connecting to ISPs
— Internet path availability, BGP, DNS

Applications
— Connectivity and performance logs in storage, database, ML etc.
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Example: Incident Routing

* The curse of dimensionality
— Need many training examples in proportion to #features
— But incidents are rare events

e Diverse data formats

— Data available at different components, regions
... with different frequency, scale, accuracy

* Limited visibility into each teams, especially in evolving networks
— No one person can understand, parse, clean all the data

— Yet, network components, monitoring data evolve all the time

Ongoing work with Microsoft



Solution: Handling Diverse Data Sources

* Distributed, per-team predictors instead of global classifiers
— Each team analyze if it should be involved in handling the incident
— Fewer dimensions

— Encode local data, local dependencies, local changes

* Challenge: Distributed analytics
— How to divide problems, data sources, analytics?

— For a broader set of problems
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Challenge 4: Network Specific Analytics
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Dynamic Information

 P2P Botnet detection as an example
Static:

Dynamic:
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Solution: Customized Analytics for Network Telemetry

* Qur solution
— Use graph convolutional neural network to encode topological information
— Embed discrete timesteps using sinusoids of different periods
— Aggregate features across time at each edge using LSTM

* Challenge: New analytics abstractions and frameworks for network-
specific feature Ongoing work



Summary of Challenges

Scalability
Real-time
Diverse data sources

Network specific data analytics
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Network Telemetry and Analytics in Wide Area

* Scalability: Even larger scale of data from IoT devices
* Real-time: More variant, challenging networks
e Diverse data sources: More heterogeneity and sometimes mobile

 Network specific analytics: A broader set of queries
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Thank you
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