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Why Should You Trust Me? 

•  Founding Co-Chair of the IEEE Robotics and Automation Society Technical 
Committee on Verification of Autonomous Systems  

•  Chair of the IEEE Guide for Verification of Autonomous Systems standard 
working group 
−  Contributor to the approved IEEE Standard 1872-2015 “Core Ontologies for Robotics 

and Automation” and Secretary for the current IEEE Standard 1872.1 working group on 
Robot Task Representation 

•  17 years of experience in autonomy and artificial intelligence for the Navy 
−  Depth (underwater autonomy): 9 years at the Naval Surface Warfare Center in Panama 

City, FL doing basic research in autonomous behaviors for AUVs  
−  Breadth (robotics in the international community):   3 years at ONR Global as the 

Associate Director for Autonomy and Unmanned Systems 
−  Depth (space robots; verification of autonomous systems):  5 years at NRL  

•  Designing the Payload Mission Manager (PMM) for a DARPA space robot program 
•  Helping build formal models of the PMM, the fault management system, and  

autonomous operations 
•  Helping to establish the verification of autonomous systems research community 

−  Breadth (evaluation of artificial intelligence):  6 month detail as the acting Chief for the 
Test, Evaluation & Assessment group at the DoD Joint AI Center 



Verification	Summary		
(Functional	Perspective)	

•  “Can	it	do	the	right	thing?”	
–  Not	physically	capable	=	don’t	need	to	evaluate	

further		
–  Stage	where	individual	behaviors	and	their	

integration	are	evaluated	

•  “Does	it	do	the	right	thing?”	
–  Decision	logic	is	wrong	=	having	the	right	

components	doesn’t	matter	
–  Stage	where	we	evaluate	the	system	as	a	whole	

•  “What	is	the	right	thing,	anyway?”	
–  It	does	the	wrong	thing	because	we	didn’t	

understand	what	it	needed	to	do	
–  Particularly	problematic	for	autonomous	systems		

•  Lack	theoretical	tools	to	answer	whether	it	can	or	does	
do	the	right	thing	

•  Process	is	more	expensive	and	time-consuming	than	for	
more	mature	disciplines	
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Can	it	pick	up	a	cup?	

Which	cup	does	it	pick	up?	

Should	it	be	picking	up	a	cup?	



Academic	Drivers	

Research	
Operational	Time:			

~2	hours	

Variability	of	operations	
environment:		Moderate	

Frequency	of	modification:		
Frequent	

Acceptable	frequency	of	
failures:			
Frequent	

Mistake	consequences:			
Negligible	

Risk	Tolerance:		High	

Industry	
Operational	Time:			
Days	to	months	

Variability	of	operations	
environment:		Low	

Frequency	of	modification:			
Never	

Acceptable	frequency	of	
failures:		Low	

Mistake	consequences:			
Expensive	

Risk	Tolerance:		Moderate	

DoD	
Operational	Time:			
Hours	to	months	

Variability	of	operations	
environment:	High	

Frequency	of	modification:		
Intermittent	

Acceptable	frequency	of	
failures:		Very	low	

Mistake	consequences:		
Catastrophic	

Risk	Tolerance:		Low	

•  Academia:		verification	of	autonomy	is	not	a	traditional	research	domain	
•  Community	is	open	to	doing	the	research,	but	needs	guidance	about	the	problem	
•  Industry	guidance	≠	DoD	guidance:		DoD	has	more	difficult	regimes	and	needs	better	

reliability	

Distribution	A:		Approved	for	public	release.		Distribution	unlimited.	 4	



Generic	Challenges	

•  In	2014,	identified	26	research	
challenges	in	verification	

•  Four	main	categories	(for	
now);	some	overlap	in	topics	
–  Abstraction	
– Models	
–  Test	
–  Tools	

•  Work	ongoing,	but	challenges	
being	added	faster	than	
they’re	being	solved	
–  Deep	Learning	
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New	Challenge	Areas	

•  In	2014,	identified	26	research	
challenges	in	verification	

•  Four	main	categories	(for	now);	
some	overlap	in	topics	
–  Abstraction	
–  Models	
–  Test	
–  Tools	

•  Work	ongoing,	but	challenges	
being	added	faster	than	they’re	
being	solved	
–  Deep	Learning	

•  The	purpose	of	verification	is	to	
build	trust	
–  Active	research	area	within	the	

robotics	community	

Distribution	A:		Approved	for	public	release.		Distribution	unlimited.	 6	

Test	

Tools	

Learning	Abstraction	

Models	

TRUST	



Defense-Centric	Challenges	

•  Need	to	verify:	
–  Safety	

•  Known	process	in	the	formal	verification	community	for	some	aspects	of	problem	
•  Autonomous	Systems:		Safety	of	subject,	safety	of	environment,	safety	of	robot,	safety	of	operator,	

safety	of	bystander	–	research	focus	typically	on	safety	of	subject	(when	“safety”	explicitly	considered)	
and	safety	of	robot	(during	autonomy	design)	

•  DoD:		More	dangerous	robot	combined	with	more	stringent	guidance	re:	safety	of	environment,	asset,	
bystander	

–  Security	
•  Known	process	in	the	formal	verification	community	
•  Autonomous	Systems:		security	typically	near	the	bottom	of	the	list	of	needs,	well	below	“does	it	

work”	
•  DoD:		Critical	need	

–  Functionality	
•  Autonomous	System:		Critical	problem	not	typically	addressed	by	current	verification	tools	
•  DoD:		requires	greater	degree	of	certainty	in	some	cases,	can	accept	less	in	others.	
•  Especially	critical	in	the	context	of	learning	systems	
•  Interesting	to	autonomous	system	designers	in	academic	community	

•  Approval	from	users	and	stakeholders	
–  Boils	down	to	trust	

•  Academic	Timescale	
–  Verification	Working	Group	has	been	active	for	5	years	

•  Have	still	only	addressed	a	fraction	of	the	challenges	identified	
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DoD	Needs	

•  Higher	required	certainty	coupled	with	complex	
system	interactions,	increased	flexibility,	and	
extended	mission	duration	
– Make	verification	of	modifications	cheaper	and	faster	
–  Establish	doctrine/tactics/principles	of	operation	to	
support	well-defined	operational	performance	
bounds	

•  Safety,	security	AND	functional	verification	
–  Functional	verification	growing	in	academia,	especially	
for	learning	and	HRI	communities	

•  Reduced	economies	of	scale	
–  Compensate	with	investment	in	process	and	tools	
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BACKUP	SLIDES:		CHALLENGES	
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Challenges, 1 

•  How is an adequate model of the system created? 
•  Common models and frameworks need to describe autonomous systems broadly enough so they 

can be used to standardize evaluation efforts and interfaces to the system. 

•  How should models of black box autonomous systems be developed and debugged? How is a 
mathematical and/or logical model suitable for formal analysis produced from empirical 
observations? 

•  How should one identify and model components that are not captured yet (and what are their 
properties)? 

•  What determines the level of simulator fidelity to extract the information of interest? 
•  How is the level of abstraction determined for the robot model, its behaviors, and the simulation that 

tests the model? How many environmental characteristics need to be specified? What are the 
aspects of the environment, the robot, and the autonomy algorithms that cannot be abstracted away 
without undermining the verification? 

•  Where is the transition from specifying system requirements to designing the system and how are 
principled requirements developed so they do not devolve into designing the solution? 

•  How is it ensured that the implicit and the explicit goals of the system are captured? How is a model 
of the system goals from a human understanding of the task goals, the system, and the environment 
created? 

•  How are performance, safety, and security considerations integrated? 
•  At what point is there enough evidence to determine that an autonomous system or behavior has 

been verified? 

•  How does one ensure it is possible, in the physical world, to test simulated situations that result in 
boundary cases? 
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Challenges, 2 

•  How would tests be designed so that passing them indicates a more general capability? 

•  How are challenging design reference missions selected so that performing well against them 
indicates a more general capability for the system rather than for specific system components? 

•  How can test scenarios be produced to yield the data required to generate mathematical / logical 
models or to find the boundary locations and fault locations in the robot state space? 

•  Once an adequate model is created how is it determined whether all resulting emergent behaviors 
were captured and what are appropriate performance measurement tools for this? 

•  Measurement and evaluation are generally poorly understood – operators can describe the tasks 
for the robot but lack tools to quantitatively evaluate them. How should autonomous behaviors be 
measured so they consistently and accurately describe the capability embodied by a robot? 

•  How is a metric defined for comparing solutions? 

•  How is the optimal defined against which the verification is performed? ? How is the solution shown 
to be in fact, optimal? How is the performance of the system measured? 

•  How is the performance from finite samples of the performance space generalized across several 
variables and parameters? 

•  Autonomy frameworks are unable to determine whether all the resulting emergent behaviors have 
been captured or to supply performance measurement tools. 

•  What new tools or techniques need to be developed? 
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Challenges, 3 

•  In general, how do we verify the fitness of a given physical robot structure for a given task or 
environment (obviously, a robot that cannot sense color or is operating in the dark with an infrared 
sensor is unfit to sort objects on the basis of color)? 

•  Descriptive frameworks are either too specific and constrain the developer to specific tools when 
designing the autonomous elements of the system or, too broad and difficult to apply to specific 
cases. Tools are needed to analyze systems at both the specific and the broad levels. 

•  How is a structured process that allows feedback between the physical/ground truth layer and the 
formal methods verification tools developed? 

•  How to disambiguate between cases where the specification was incorrect (task description 
abstraction failed to capture some required system action) and those where the environmental model 
was incorrect (environmental abstraction failed to capture some critical system-environment 
interaction)? How to identify not just individual situations but classes of situations where the vehicle 
fails to be safe or to achieve safe operation (e.g. a front wheel often falls off the cliff but the back 
wheels never do). How should unanticipated unknowns be accommodated? 

•  If an algorithm, or patch to an existing algorithm, was replaced can it be proven that no new failure 
modes were introduced without re-doing the entire verification process? 

•  How do we verify systems that incorporate deep learning? 

•  In what ways should the training data used by learning components integrated into the verification 
testing and analysis processes? 


