FAIRNESS IN MACHINE LEARNING

Toniann Pitassi
WHY WAS I NOT SHOWN THIS AD?
BIAS IN MACHINE LEARNING?

Gender was misidentified in 35 percent of darker-skinned females in a set of 271 photos.

Joy Buolamwini

How We Made AI As Racist and Sexist As Humans

AI influences everything from hiring decisions to loan approvals. Too bad it’s as biased as we are.

By Danielle Groen
Illustration by Cristian Fowlie
Updated 8:06, May 17, 2018 | Published 10:09, May 16, 2018

The Walrus, 2018
Fairness in ML: Goals

Identify and mitigate bias in ML-based decision-making, in all aspects of data pipeline
CLASSIFICATION

\(x \in U \)
feature vector

\(y = f(x) \)
actual value (0 or 1)

\(\hat{y} \)
predicted value

GOAL

given a lot of labelled examples from population
Learn a classifier that is accurate on > 99% of population
CLASSIFICATION

\[x \in \mathcal{U} \quad \text{feature vector} \]
\[y = f(x) \quad \text{actual value (0 or 1)} \]
\[\hat{y} \quad \text{predicted value} \]

EXAMPLES:

- Recognize if an image contains a car
- Predict (from resume) if candidates gets interview
- Predict if criminal will recidivate
FAIR CLASSIFICATION

\[x \in U \] feature vector
\[y = f(x) \] actual value (0 or 1)
\[\hat{y} \] predicted value
\[A \] protected group

GOAL

Learn a classifier that is:

- accurate
- fair with respect to \(A \)
Most common way is to define "fair" is to require some invariance/independence with respect to the sensitive attribute.
FAIR CLASSIFICATION : DEFINITIONS

Most common way is to define “fair” is to require some invariance/independence with respect to the sensitive attribute.

- DEMOGRAPHIC PARITY: \(\hat{Y} \perp A \)
Fair Classification: Definitions

Most common way is to define "fair" is to require some invariance/independence with respect to the sensitive attribute.

- **Demographic Parity:** $\hat{y} \perp A$

- **Equalized Odds:** $\hat{y} \perp A \mid y$
FAIR CLASSIFICATION: DEFINITIONS

Most common way is to define "fair" is to require some invariance/independence with respect to the sensitive attribute

- DEMOGRAPHIC PARITY: $\hat{Y} \perp A$
- EQUALIZED ODDS: $\hat{Y} \perp A|Y$
- EQUALIZED CALIBRATION: $Y \perp A|\hat{Y}$
HISTORY

50 Years of Test (Un)fairness: Lessons for Machine Learning by Hutchinson & Mitchell

Flurry of activity in ML trying to define fairness mirrors efforts 50+ years ago to define bias and fairness in educational testing

US Civil Rights Act of 1964 outlawed discrimination on basis of race, color, religion, sex, national origin; followed by questions whether assessment tests were discriminatory

Example: on formal model predicting educational outcome from test scores (Cleary 1966)

“A test is biased for members of a subgroup of the population if, in the prediction of a criterion for which the test was designed, consistent nonzero errors of prediction are made for members of the subgroup. In other words, the test is biased if the criterion score predicted from the common regression line is consistently too high or too low for members of the subgroup. With this definition of bias, there may be a connotation of “unfair,” particularly if the use of the test produces a prediction that is too low.”

Parallels --
• Test items or questions – input features
• Responses – values of features
• Linear model predicts test score – simple outcome prediction models
• Cleary studied the relation between SAT scores and college GPA using real-world data from 3 schools, (racial data from admissions office, NAACP list of students, class pictures) -- did not find racial bias

• Overall many parallels: formal notions of fairness based on population subgroups, the realization that some fairness criteria are incompatible with one another

• Example: Thorndike (1971) pointed out that different groups vary in false positive/negative rates, should be balanced between the groups via different thresholds

• Research died out, possibly due to focus on quantitative definitions, separation from social, legal, societal concerns – cautionary tale?
How can learned classifiers be biased?
Sources of Bias/Discrimination?

- Imbalanced data/impoverished data
- Labelled data incorrect/noisy
- Measurements - selective choices, measurement issues
- ML prediction error imbalanced
- Compound Injustices (Hellman)
EXAMPLE OF BIAS

PASCAL cars

SUN cars

Caltech101 cars

ImageNet cars

Predictor trained on Caltech101 won't recognize sports cars
She is actually a good leader.
He is just pretty.
He is really a good leader. She's just beautiful.
He is a nurse.
She is an engineer.

She is a nurse.
He is an engineer.
APPROACHES TO FAIR CLASSIFICATION

I. Model-centered
 - Add fairness criteria to objective function
 - Regularizer
 - Adversarial
 - Postprocess to achieve fairness

II. Data-centered
 - Change/Modify data
 - Learn a fair representation of data
HURDLES AND SUBTLETIES

1. Seems impossible to have one good definition of fairness

- DEMOGRAPHIC PARITY: \(\hat{Y} \perp A \)
- EQUALIZED ODDS: \(\hat{Y} \perp A \mid Y \)
- EQUALIZED CALIBRATION: \(Y \perp A \mid \hat{Y} \)

Theorem These three definitions of fairness are mutually exclusive
Example

COMPAS: risk assessment program

Propublica concluded that COMPAS is biased:

- More blacks incorrectly predicted to recidivate

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>64.9</td>
<td>65.7</td>
</tr>
<tr>
<td>False Positive Rate</td>
<td>40.4</td>
<td>25.4</td>
</tr>
<tr>
<td>False Negative Rate</td>
<td>30.9</td>
<td>47.9</td>
</tr>
</tbody>
</table>
IS CLASSIFIER BIASED?

Probublica says:
Blacks face higher false positive rates so violates equalized odds.

Northpointe's defense:
Scores satisfy equalized calibration and we can't have both.
HURDLES AND SUBTLETIES

1. Seems impossible to have one good definition of fairness

Alternatives

- Individual fairness
 underlying task-specific similarity metric ensure similar treatment for similar people

- Fair representations
HURDLES AND SUBTLETIES

1. Seems impossible to have one good definition of fairness

2. How do we even know which groups are being treated unfairly?
HURDLES AND SUBTLETIES

1. Seems impossible to have one good definition of fairness

2. How do we even know which groups are being treated unfairly?
 - multigroup fairness
 - fairness under changing dynamics
Challenges

* Understand dynamics of unfairness

* Impoverished Data:
 - What would have happened if...
 - Causal inference?
A chance to understand, identify, challenge, and improve decision making (not just automated decision making)
Thanks!