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HISTORY

50 Years of Test (Un)fairness: Lessons for Machine Learning by Hutchinson & Mitchell

FIurr?/ of activity in ML trying to define fairness mirrors efforts 50+ years ago to define bias
and fairness in educational testing

US Civil Rights Act of 1964 outlawed discrimination on basis of race, color, religion, sex,
national origin; followed by questions whether assessment tests were discriminatory

Example: on formal model predicting educational outcome from test scores (Cleary 1966)
“Atest is biased for members of a subgroup of the population
if, in the prediction of a criterion for which the test
was designed, consistent nonzero errors of prediction
are made for members of the subgroup. In other words,
the test is biased if the criterion score predicted from the
common regression line is consistently too high or too
low for members of the subgroup. With this definition
of bias, there may be a connotation of “unfair," particularly
if the use of the test produces a prediction that is
too low.”

Parallels --

« Test items or questions — input features

 Responses — values of features

 Linear model predicts test score— simple outcome prediction models



HISTORY

Cleary studied the relation between SAT scores and college GPA using real-
world data from 3 schools, (racial data from admissions office, NAACP list of
students, class pictures) -- did not find racial bias

Overall many parallels: formal notions of fairness based on population
subgroups, the realization that some fairness criteria are incompatible with
one another

Example: Thorndike (1971) pointed out that different groups vary in false
positive/negative rates, should be balanced between the groups via different
thresholds

Research died out, possibly due to focus on quantitative definitions,
separation from social, legal, societal concerns — cautionary tale?
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