SmartFarm: Computing Research for the Next-Generation of Precision Agriculture

Chandra Krintz
Computer Science Department
Univ. of California, Santa Barbara
UCSB

Using Computing to Sustainably Feed a Growing Population Panel AAAS Annual Meeting, February 14, 2020

- > Adapt farm practices to crop/field variability to increase production
 - Measure & understand variability
 - > Use this information to optimize input use
 - > Automate some/all of these steps

- > Adapt farm practices to crop/field variability to increase production
 - Measure & understand variability
 - Use this information to optimize input use
 - > Automate some/all of these steps
- Computing research
 - ➤ Observation (sensing, measuring) & actuation
 - > Algorithms: AI, ML, statistical/data analyses
 - > Systems: Hardware & software for automation and decision support
 - > Plus multidisciplinary research collaborations to tailor solutions to Ag

- > Adapt farm practices to crop/field variability to increase production
 - Measure & understand variability
 - Use this information to optimize input use
 - > Automate some/all of these steps
- Computing research
 - > Observation (sensing, measuring) & actuation
 - > Algorithms: AI, ML, statistical/data analyses
 - > Systems: Hardware & software for automation and decision support
 - > Plus multidisciplinary research collaborations to tailor solutions to Ag

> Adapt farm practices to crop/field variability to increase production

Computing

- Measure & understand variability
- > Use this information to optimize input use
- > Automate some/all of these steps
- Computing research
 - > Observation (sensing, measuring) & actuation
 - > Algorithms: AI, statistical analyses, data analytics
 - > Systems: Hardware & software for automation and decision support
 - > Plus multidisciplinary research collaborations to tailor solutions to Ag

Revolutionizing Precision Ag

- > Sensing, measuring, and monitoring
 - Vast amount of data surrounding the crop lifecycle
 - > Weather, records, sensors, imagery, ...
 - > Sense/actuate: Internet of Things (IoT)

http://www.agrimachinerynews.com/wp-content/uploads/2014/10/Agri-Machinery-News-New-Holland-Precision-Farming.jpg

Revolutionizing Precision Ag

- > Sensing, measuring, and monitoring
 - Vast amount of data surrounding the crop lifecycle
 - > Weather, records, sensors, imagery, ...
 - > Sense/actuate: Internet of Things (IoT)

- If tailored to the Ag domain
 - Leverage multi-disciplinary collaboration
 - > Provide data driven decision support + automation

http://www.agrimachinerynews.com/wp-content/uploads/2014/10/Agri-Machinery-News-New-Holland-Precision-Farming.jpg

- What should I grow?
- When should I water?
- What will my yields be?

Revolutionizing Precision Ag

- > Sensing, measuring, and monitoring
 - Vast amount of data surrounding the crop lifecycle
 - > Weather, records, sensors, imagery, ...
 - > Sense/actuate: Internet of Things (IoT)

http://www.agrimachinerynews.com/wp-content/uploads/2014/10/Agri-Machinery-News-New-Holland-Precision-Farming.jpg

- > Algorithms: AI, statistical analyses, data analytics
 - ✓ If tailored to the Ag domain
 - ➤ Leverage multi-disciplinary collaboration
 - ➤ Provide data driven decision support + automation

- What should I grow?
- When should I water?
- What will my yields be?

What about the systems?

Cloud Systems Were Not Designed for Rural Precision Agriculture

Clouds work for large scale data aggregation, processing, sharing

- Rural precision Ag introduces new challenges
 - > Vast acreage to sense, measure, monitor, actuate, & automate
 - Sensors/actuators: large in number, very low cost, battery powered + solar, resource constrained, in harsh environments
 - > Can't ship data to cloud: Radio power goes like the square of the distance
 - Many decisions/operations are purely local moving this data is wasteful

Cloud Systems Were Not Designed for Rural Precision Agriculture

Clouds work for large scale data aggregation, processing, sharing

- Rural precision Ag introduces new challenges
 - > Vast acreage to sense, measure, monitor, actuate, & automate
 - Sensors/actuators: large in number, very low cost, battery powered + solar, resource constrained, in harsh environments
 - > Can't ship data to cloud: Radio power goes like the square of the distance
 - Many decisions/operations are purely local moving this data is wasteful
 - Intermittent or no Internet connectivity

Data privacy = grower's economic advantage

How Can We Write Apps for Such a Complex System?

Goal: Expedite Innovation in Precision Ag

- ➤ Our Approach:
- > SPOT: Software platform for Apps
 - > Apps run on all tiers without modification
 - > Security, access, & deployment control
 - Designed for on-farm use
 - > 100x more power efficient
 - ➤ Than existing cloud/edge solutions
- Free & open source

Lessons Learned: The Future of Precision Ag

- > Academia has freedom to consider new approaches
 - Cloud works well for some things
 - Domain-specific design = new directions with vast potential
 - > Build communities & demonstrable deployments via open source
 - Collaborations are key to expediting innovation
 - > Across disciplines; academia, government, & industry

Exciting Innovations Just Over the Horizon...

CS Research for Ag

A New Kind of Computer Science Research for Ag

Academia + Industry + Government

- Systems + Algorithms + Domain Sci.
- Problem driven & empirical
 - Sustainable, efficient, useful
- Societal & regional impact
- Multidisciplinary collaboration
- Demonstrable, applied, & open
- Engage students & farm communities

Thanks!

CalPoly, Fresno State, UCDavis, UCR, NCState, Powwow Energy, Sedgwick Reserve, Private Growers

Support: NSF, California Energy Commission, NIH, Google, Intel, IBM Research, Microsoft Research, UCSB IEE

Students:

Shereen Hussein

Fatih Bakir

Wei-Tsung Lin

Nazmus Saquib

Michael Zhang

UCSB RACELab

The Lab for Research on Adaptive Computing Environments Computer Science Department, Harold Frank Hall (E-5), Santa Barbara, CA

Chandra Krintz

Rich Wolski

ckrintz@cs.ucsb.edu, rich@cs.ucsb.edu
http://www.cs.ucsb.edu/~ckrintz/racelab.html

