SmartFarm: Computing Research for the Next-Generation of Precision Agriculture

Chandra Krintz
Computer Science Department
Univ. of California, Santa Barbara

Using Computing to Sustainably Feed a Growing Population Panel
AAAS Annual Meeting, February 14, 2020
Precision Agriculture (Ag)

- Adapt farm practices to crop/field variability to increase production
 - Measure & understand variability
 - Use this information to optimize input use
 - Automate some/all of these steps
Precision Agriculture (Ag)

- Adapt farm practices to crop/field variability to increase production
 - Measure & understand variability
 - Use this information to optimize input use
 - Automate some/all of these steps

- Computing research
 - Observation (sensing, measuring) & actuation
 - Algorithms: AI, ML, statistical/data analyses
 - Systems: Hardware & software for automation and decision support

- Plus multidisciplinary research collaborations to tailor solutions to Ag
Precision Agriculture (Ag)

- Adapt farm practices to crop/field variability to increase production
 - Measure & understand variability
 - Use this information to optimize input use
 - Automate some/all of these steps

- Computing research
 - Observation (sensing, measuring) & actuation
 - Algorithms: AI, ML, statistical/data analyses
 - Systems: Hardware & software for automation and decision support
 - Plus multidisciplinary research collaborations to tailor solutions to Ag
Precision Agriculture (Ag)

- Adapt farm practices to crop/field variability to increase production
 - Measure & understand variability
 - Use this information to optimize input use
 - Automate some/all of these steps

- Computing research
 - **Observation** (sensing, measuring) & actuation
 - **Algorithms**: AI, statistical analyses, data analytics
 - **Systems**: Hardware & software for automation and decision support

- Plus multidisciplinary research collaborations to tailor solutions to Ag
The Cloud + Data Analytics Has Revolutionized E-Commerce
The Cloud + Data Analytics Has Revolutionized E-Commerce
The Cloud + Data Analytics Has Revolutionized E-Commerce

- What will you buy?
- When will you buy it?
- What will you pay?

Cloud Computing Systems

Math and Statistics (Code!)

Algorithms: Inference & Prediction
The Cloud + Data Analytics Has Revolutionized E-Commerce

Observation

Cloud Computing Systems

Math and Statistics (Code!)

Algorithms: Inference & Prediction

- What will you buy?
- When will you buy it?
- What will you pay?

Can we use it to revolutionize agriculture?
Revolutionizing Precision Ag

- Sensing, measuring, and monitoring
 - Vast amount of data surrounding the crop lifecycle
 - Weather, records, sensors, imagery, ...
 - Sense/actuate: Internet of Things (IoT)
Revolutionizing Precision Ag

- Sensing, measuring, and monitoring
 - Vast amount of data surrounding the crop lifecycle
 - Weather, records, sensors, imagery, …
 - Sense/actuate: Internet of Things (IoT)

- Algorithms: AI, statistical analyses, data analytics
 - If tailored to the Ag domain
 - Leverage multi-disciplinary collaboration
 - Provide data driven decision support + automation

- What should I grow?
- When should I water?
- What will my yields be?
Revolutionizing Precision Ag

- **Sensing**, measuring, and monitoring
 - Vast amount of data surrounding the crop lifecycle
 - Weather, records, sensors, imagery, ...
 - Sense/actuate: Internet of Things (IoT)

- **Algorithms**: AI, statistical analyses, data analytics
 - If tailored to the Ag domain
 - Leverage multi-disciplinary collaboration
 - Provide data driven decision support + automation

What about the systems?

- What should I grow?
- When should I water?
- What will my yields be?
Cloud Systems Were Not Designed for Rural Precision Agriculture

- Clouds work for large scale data aggregation, processing, sharing
- Rural precision Ag introduces **new challenges**
 - Vast acreage to sense, measure, monitor, actuate, & automate
 - Sensors/actuators: large in number, very low cost, **battery powered** + solar, resource constrained, in harsh environments
 - Can’t ship data to cloud: Radio power goes like the square of the distance
 - Many decisions/operations are *purely local* - moving this data is wasteful
Cloud Systems Were Not Designed for Rural Precision Agriculture

- Clouds work for large scale data aggregation, processing, sharing
- Rural precision Ag introduces **new challenges**
 - Vast acreage to sense, measure, monitor, actuate, & automate
 - Sensors/actuators: large in number, very low cost, **battery powered** + solar, resource constrained, in harsh environments
 - Can’t ship data to cloud: Radio power goes like the square of the distance
 - Many decisions/operations are **purely local** - moving this data is wasteful
- Intermittent or no Internet connectivity
- Data privacy = grower’s economic advantage
Our Approach:
Move the cloud (code) to the data
Sensing Tier

Edge Tier

Our Approach: Move the cloud (code) to the data

Edge Systems

On-Farm

Public-cloud-compatible

Mini clouds

Resource Constrained

No Internet Connection? No Problem.
Sensing Tier

Edge Tier

Our Approach:
Move the cloud (code) to the data

Edge Systems
On-Farm
Public-cloud-compatible
Mini clouds

Data travels much shorter distances!

No Internet Connection? No Problem.

Resource Constrained
Sensing Tier

Edge Tier

Our Approach: Move the cloud (code) to the data

Cloud Tier

Edge Systems
- On-Farm
- Public-cloud-compatible
- Mini clouds
- Grower controls data sharing

Resource Constrained

Public Clouds

Resource Rich

Public clouds

Amazon web services

Microsoft Azure

Google Cloud Platform
Our Approach: Move the cloud (code) to the data

Edge Tier:
- Edge Systems
 - On-Farm
 - Public-cloud-compatible
 - Mini clouds
 - Grower controls data sharing

Cloud Tier:
- Data analytics apps
- External data sources
- Public Clouds
 - Amazon Web Services
 - Microsoft Azure
 - Google Cloud Platform

Resource Constrained
- Sensing Tier

Resource Rich
- Cloud Tier
Our Approach: Move the data ONLY as far as required.
How Can We Write Apps for Such a Complex System?
Goal: Expedite Innovation in Precision Ag

- Our Approach:
 - SPOT: Software platform for Apps
 - Apps run on all tiers without modification
 - Security, access, & deployment control
 - Designed for on-farm use
 - 100x more power efficient
 - Than existing cloud/edge solutions
 - Free & open source
Lessons Learned: The Future of Precision Ag

- Academia has freedom to consider new approaches
- Cloud works well for some things
- Domain-specific design = new directions with vast potential
- Build communities & demonstrable deployments via open source

- Collaborations are key to expediting innovation
- Across disciplines; academia, government, & industry

Exciting Innovations Just Over the Horizon...
A New Kind of Computer Science Research for Ag

Academia + Industry + Government
• Systems + Algorithms + Domain Sci.
• Problem driven & empirical
 • Sustainable, efficient, useful
• Societal & regional impact
• Multidisciplinary collaboration
• Demonstrable, applied, & open
• Engage students & farm communities
Thanks!

- **Collaborators:** UCSB, Lindcove REC, CalPoly, Fresno State, UCDavis, UCR, NCState, Powwow Energy, Sedgwick Reserve, Private Growers

- **Support:** NSF, California Energy Commission, NIH, Google, Intel, IBM Research, Microsoft Research, UCSB IEE

UCSB RACELab

The Lab for Research on Adaptive Computing Environments

Computer Science Department, Harold Frank Hall (E-5), Santa Barbara, CA

Students:

- Fatih Bakir
- Kerem Celik
- Gareth George
- Shereen Hussein
- Wei-Tsung Lin
- Nazmus Saquib
- Michael Zhang

ckrintz@cs.ucsb.edu, rich@cs.ucsb.edu

http://www.cs.ucsb.edu/~ckrintz/racelab.html

Chandra Krintz
Rich Wolski