Into The Wild: Radically New Computing Methods for Science

Tom Conte

Co-Director, CRNCH Georgia Tech

/// cREATiNG THE NEXT MOORE'S LAW

Georgia ©enter for Research into
Tech $\|$ Novel Computing lierarchies

For more information, visit our website at www.crnch.gatech.edu or send email to crnch@gatech.edu

Moore's law means:

Computers get twice as fast every two years

Moore's law means:

Computers get twice as fast every two years

Well, that's not what Moore said........

Moore's Law:

If \$1 gets you $\mathbf{1 , 0 0 0}$ transistors today, then wait (1965: one year) or (1975: two years) and \$1 will get you 2,000 transistors

Used to track 1 to 1 with computer speed, but then...

In 1995, wire delays grew: To cover it up, microprocessors got "More Complicated"

In 2005, we hit another wall: Intel P4 Prescott

Georgia
Tech Novel computing nierarchies

This is why clock speed stalled 2005

Potential Approaches vs. Disruption in Computing Stack Ieee

Algorithm
Language
API
Architecture
ISA
Microarchitecture
FU
logic
device

LEGEND: No Disruption

More Moore: A better transistor?

Energy vs. Delay, ALU

Potential Approaches vs. Disruption in Computing Stack Ieee

Algorithm
Language
API
Architecture
ISA
Microarchitecture
FU
logic
device

LEGEND: No Disruption

Level 2 example: in 1995, wire delays grew, so processors got "More Complicated"

Cryogenic computing: smaller, lower powe

- Superconduct at 4 degrees kelvin
- $1 / 100^{\text {th }}$ power (including cryocooling overhead!) vs. CMOS
- Potential to make data centers orders of magnitude lower power

Potential Approaches vs. Disruption in Computing Stack leee

Algorithm
Language
API
Architecture
ISA
Microarchitecture
FU
logic
device

LEGEND: No Disruption

Digital Accelerators

Problems:

- Programmer must rewrite the program to use the accelerators!
- Long term solution?
- Still uses the same transistor technologies that all other computers use
- After you accelerate everything interesting, then what?
...you're back to the limits of today's transistors

Potential Approaches vs. Disruption in Computing Stack Ieee

Algorithm
Language
API
Architecture
ISA
Microarchitecture
FU
logic
device

Conventional computing is "von Neumann"

Georgia Center for Research into
Tech Noved conpputing Mierarchies

Non-Von \#1: Quantum Computers

Computing using Quantum Bits (Qubits)

State of a Classical Bit
$\rightarrow 1$ or 0 two points on sphere

Quantum Bit
State of a Quantum Bit
\rightarrow Any point on the sphere (Vector in Complex Hilbert Space)

Secret sauce: Quantum Entanglement ("Spooky action at a distance")

Qubits are Fragile and Vulnerable to Errors

*Qubits can "collapse" if they are "observed" Hey Schrödinger, the cat's alive!

1
*Quantum operations can produce erroneous output

1

Quantum Error Correction is Expensive

It takes a collection of noisy qubits

... to make one "Logical" Qubiut

How many? Need 100s of noisy qubits to make one logical qubit

Quantum Error Correction is Expensive

It takes a colled * Fabricated but no data reported yet gical" Qubiut

How many? Need 100s of noisy qubits

 to make one logical qubit
Non-Von \#2: Analog(ous) computing

Example \#1: Find the Fourier transform of a signal X

Example \#2:
 Nature Optimizes Better than Von Neumann

Problem: Assemble 1 100,000 salt molecules into their lowest energy configuration

Von Neumann:

Try all combinations
Will take longer than the remaining life of the universe to solve

Nature: annealing

Some "interesting" physical processes

- Resistive crossbar networks
- Open system thermodynamics
- The Brian
- RNA/DNA

- Coupled oscillators

- And undiscovered others

Into the Wild: Summary

- Moore's law will not save us anymore
- \$oftware will need to be rewritten
- Digital accelerators are a stop-gap
- Non von Neumann: Huge potential
- Quantum is ... hard, but lots of potential to use today's "noisy quantum" computers
- Analog(ous) computation shows promise... but we're in its infancy
Generalists needed!

For more...

IEEE

rebootingcomputing.ieee.org

International Roadmap for Devices and Systems
irds.ieee.org

CCC
Computing Community Consortium Catalyst

crnch.gatech.edu We love the crazy

