

Tom Conte Co-Director, CRNCH Georgia Tech

CREATING THE NEXT MOORE'S LAW

Center for Research into Tech | Novel Computing Hierarchies For more information, visit our website at www.crnch.gatech.edu or send email to crnch@gatech.edu

Moore's law means:

Computers get twice as fast every two years

Moore's law means:

Computers get twice as fast every two years

Well, that's not what Moore said......

Moore's Law:

If \$1 gets you 1,000 transistors today, then wait
(1965: one year) or (1975: two years) and
\$1 will get you 2,000 transistors

Used to track 1 to 1 with computer speed, but then...

In 1995, wire delays grew: To cover it up, microprocessors got "More Complicated"

In 2005, we hit another wall: Intel P4

Prescott

200W/cm²

This is why clock speed stalled 2005

Potential Approaches vs. Disruption in Computing Stack

More Moore: A better transistor?

Energy vs. Delay, ALU

Straintronic

Potential Approaches vs. Disruption in Computing Stack

Level 2 example: in 1995, wire delays grew, so processors got "More Complicated"

Cryogenic computing: smaller, lower powe

- Superconduct at 4 degrees kelvin
- 1/100th power (including cryocooling overhead!) vs. CMOS
- Potential to make data centers orders of magnitude lower power

Potential Approaches vs. Disruption in Computing Stack

Digital Accelerators

Problems:

- Programmer must rewrite the program to use the accelerators!
- Long term solution?
 - Still uses the same transistor technologies that all other computers use
 - After you accelerate everything interesting, then what?
 - ...you're back to the limits of today's transistors

Potential Approaches vs. Disruption in Computing Stack

Conventional computing is "von Neumann"

Non-Von #1: Quantum Computers

Logistics

Machine Learning

Drug Discovery

Computing using Quantum Bits (Qubits)

State of a *Classical Bit*→ 1 or 0 two points on sphere

Quantum Bit

State of a Quantum Bit

Any point on the sphere
(Vector in Complex Hilbert Space)

Secret sauce: Quantum Entanglement ("Spooky action at a distance")

Qubits are Fragile and Vulnerable to Errors

Qubits can "collapse" if they are "observed" Hey Schrödinger, the cat's alive! Time = 0

Time = t

Quantum operations can produce erroneous output

Dealing with Qubit Errors is the #1 problem in Quantum Computing

Quantum Error Correction is Expensive

It takes a collection of noisy qubits

... to make one "Logical" Qubiut

How many? Need <u>100s</u> of noisy qubits to make one logical qubit

Quantum Error Correction is Expensive

Quantum Machine	Number of Qubits Now
Google	53/72*
IBM	53
Intel	49
Rigetti	32
IonQ	11

* Fabricated but no data reported yet

gical" Qubiut

How many? Need <u>100s</u> of noisy qubits to make one logical qubit

Non-Von #2: Analog(ous) computing

Example #1: Find the Fourier transform of a signal X

Example #2:

Nature Optimizes Better than Von Neumann

Problem: Assemble 1 100,000 salt molecules into their lowest energy configuration

Von Neumann:

Try all combinations

Will take longer than the remaining life of the universe to solve

Nature: annealing

Some "interesting" physical processes

- Resistive crossbar networks
- Open system thermodynamics
- The Brian
- RNA/DNA

- Coupled oscillators
- And undiscovered others

INTO THE WILD: SUMMARY

- Moore's law will not save us anymore
- \$oftware will need to be rewritten
- Digital accelerators are a stop-gap
- Non von Neumann: Huge potential
 - Quantum is ... hard, but lots of potential to use today's "noisy quantum" computers
 - Analog(ous) computation shows promise...
 but we're in its infancy

Generalists needed!

For more...

rebootingcomputing.ieee.org

INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS

irds.ieee.org

cra.org/ccc

crnch.gatech.edu
We love the crazy