Panel 1: Al Assurance: Small and Large

Tom Dietterich

Collaborative Robotics and Intelligent Systems (CoRIS)

Oregon State University

Assurance for Machine Learning

- Assurance by Construction
- Assurance by Run-time Monitoring

Assurance by Construction

- Robust training
 - Adversarial training can improve robustness
 - (Goodfellow, et al., 2015; Madry, et al., 2018)
- Robust query processing
 - Post-processing by stability testing can guarantee robustness
 - (Li, Chen, Wang & Carin, 2019, arXiv 1809.03113)
 - Requires stationarity assumption

Run-Time Assurance

- Rejection
 - Reject queries for which the ML system has low confidence
 - Requires fitting a confidence function or rejection function
 - Calibrated probabilities (Nicolescu-Mizil & Caruana, 2005)
 - Rejection functions (Cortes, DeSalvo & Mohri, 2018)
 - Requires stationarity assumption

Data Shift Detection

- Data Shift:
 - Changes in class probabilities (e.g., increase in cyberattacks)
 - Changes in input distribution (e.g., network traffic shifts)
 - Changes in the decision boundary (e.g., attackers try to hide)
 - New classes to predict (e.g., new kind of cyberattack)
- Methods:
 - For single queries: Anomaly detection (Liu, Garrepalli, et al. ICML 2018)
 - For a batch of queries: Two-sample testing (Lopez-Paz & Oquab, 2018; Gretton, et al. 2007, Anderson, et al. 1994)
 - Provides guarantees

High Reliability Organizations

Todd LaPorte, Gene Rochlin, and Karlene Roberts

- Preoccupation with failure
 - Fundamental belief that the system has unobserved failure modes
 - Treat anomalies and near misses as symptoms of a problem with the system
- Reluctance to simplify interpretations
 - Comprehensively understand the situation
- Sensitivity to operations
 - Maintain continuous situational awareness
- Commitment to resilience
 - Develop the capability to detect, contain, and recover from errors. Practice improvisational problem solving
- Deference to expertise
 - During a crisis, authority migrates to the person who can solve the problem, regardless of their rank

Designing AI Systems to be HROs

- Maintain Situational Awareness
 - AI methods are very good at integrating data from multiple sensors and effectors to estimate a probability distribution over states
- Detect Anomalies and Near Misses
 - Anomalies: Yes
 - Near Misses: Research needed
- Generate Candidate Explanations for Anomalies & Near Misses
 - Very little work: Research needed
- Improvise Solutions
 - Improvisational problem solving that extends or operates outside the system model

Assessment: Designing AI as an HRO

	Assessment
Situational Awareness	A mature methods
Detect Anomalies and Near Misses	B high-dimension, dynamics
Explain Anomalies and Near Misses	D only basic techniques
Improvise Solutions	F

Designing a Human + Al Team as an HRO

- Even very powerful AI systems will be surrounded by a human team
- Situational Awareness
 - Al can track the situation, but humans and Al must establish a shared mental model of the situation: Research needed
 - Humans must be aware of what version of the AI system they are using. When was it last updated/retrained? Research needed
- Detect Anomalies and Near Misses
 - Al system must understand and predict behavior of human team
 - Al and Humans must work together: interactive anomaly detection
- Generate Candidate Explanations for Anomalies & Near Misses
 - Very little work: Research needed
- Improvise Solutions
 - Al should support human improvisational problem solving: Research Needed
 - Example: mixed-initiative planning

Assessment: Human + AI HROs

	Assessment
Situational Awareness	C poor UI, poor communication
Detect Anomalies and Near Misses	C user feedback to anomaly detection
Explain Anomalies and Near Misses	D only basic techniques
Improvise Solutions	D mixed-initiative planning

Backup Material

Assurance by Construction

- Let $f(x; \theta)$ be a predictive model parameterized by θ
- Training data {($x \downarrow 1, y \downarrow 1$),...,($x \downarrow N, y \downarrow N$)}
- Standard training
- $\theta \uparrow * := \operatorname{argmin}_{-} \theta \sum_{i=1}^{i=1} \uparrow N \overset{\text{mill}}{=} L(f(x \downarrow i; \theta), y \downarrow i)$ where L(y, y) is the loss function for predicting y when the true answer was y
- Robust (adversarial) training
- $\theta \uparrow * := \operatorname{argmin}_{-\theta} \max_{-\delta \downarrow i \in \Delta} \sum_{i=1}^{\infty} L(f(x \downarrow i + \delta \downarrow i; \theta), y \downarrow i)$ where Δ is a set of allowed perturbations (Goodfellow, et al., 2015; Madry, et al., 2018)

Equivalent, in some cases, to regularization methods

Assurance by Post Processing

- Given a trained *f*, post-process it to guarantee robustness
- Example: Stability Testing
 - Given query xlq, sample perturbations and predict y using majority vote
 - $f(x \downarrow q; \theta) = orange$
 - but the majority of perturbed points have $f(x\downarrow q + \delta) = blue$
 - so $y \coloneqq blue$
- First method to give a guarantee on ImageNet (1000 classes)
- Li, Chen, Wang & Carin, 2019, arXiv 1809.03113

Assurance by Rejection

- Construct a rejection function \mathcal{G}
- Example: *g* produces a calibrated probability. If the maximum probability is too small, then reject
- This is a type of *competence model*

Assurance by Runtime Monitoring

- Construction-time guarantees assume test queries come from the same distribution as training queries
- This assumption rarely holds in practice
 - Changes in class probabilities (e.g., increase in cyberattacks)
 - Changes in input distribution (e.g., network traffic shifts)
 - Changes in the decision boundary (e.g., attackers try to hide)
 - New classes to predict (e.g., new kind of cyberattack)
- Data shift detection
 - Compare recent queries $\{x \downarrow q1, x \downarrow q2, ..., x \downarrow qm\}$ to training points $\{x \downarrow 1, ..., x \downarrow N\}$
 - Use two-sample tests:
 - typical sets, kernel maximum mean discrepancy, old-vs-new classifier
- Anomaly detection
 - $A(x\downarrow q) \coloneqq -\log P(x\downarrow q)$, where *P* is the distribution of training points
 - Operates on single points => generates many false alarms

Open Category Guarantee

- Assume we know (a bound on) the proportion α of test queries that correspond to new classes "aliens"
- Then we can estimate a threshold *τ* that with high probability will detect 1−*ε* of the aliens on new test queries
- Liu, Garrepalli, et al. ICML 2018

Proportion of Aliens = α

 $P \downarrow m = (1 - \alpha) P \downarrow 0 + \alpha P \downarrow a$