Panel 1: AI Assurance: Small and Large

Tom Dietterich
Collaborative Robotics and Intelligent Systems (CoRIS)
Oregon State University
Assurance for Machine Learning

• Assurance by Construction
• Assurance by Run-time Monitoring
Assurance by Construction

• Robust training
 • Adversarial training can improve robustness
 • (Goodfellow, et al., 2015; Madry, et al., 2018)

• Robust query processing
 • Post-processing by stability testing can guarantee robustness
 • (Li, Chen, Wang & Carin, 2019, arXiv 1809.03113)
 • Requires stationarity assumption
Run-Time Assurance

- Rejection
 - Reject queries for which the ML system has low confidence
 - Requires fitting a confidence function or rejection function
 - Calibrated probabilities (Nicolescu-Mizil & Caruana, 2005)
 - Rejection functions (Cortes, DeSalvo & Mohri, 2018)
 - Requires stationarity assumption
Data Shift Detection

• Data Shift:
 • Changes in class probabilities (e.g., increase in cyberattacks)
 • Changes in input distribution (e.g., network traffic shifts)
 • Changes in the decision boundary (e.g., attackers try to hide)
 • New classes to predict (e.g., new kind of cyberattack)

• Methods:
 • For single queries: Anomaly detection (Liu, Garrepalli, et al. ICML 2018)
 • Provides guarantees
High Reliability Organizations
Todd LaPorte, Gene Rochlin, and Karlene Roberts

• Preoccupation with failure
 • Fundamental belief that the system has unobserved failure modes
 • Treat anomalies and near misses as symptoms of a problem with the system

• Reluctance to simplify interpretations
 • Comprehensively understand the situation

• Sensitivity to operations
 • Maintain continuous situational awareness

• Commitment to resilience
 • Develop the capability to detect, contain, and recover from errors. Practice improvisational problem solving

• Deference to expertise
 • During a crisis, authority migrates to the person who can solve the problem, regardless of their rank
Designing AI Systems to be HROs

• Maintain Situational Awareness
 • AI methods are very good at integrating data from multiple sensors and effectors to estimate a probability distribution over states

• Detect Anomalies and Near Misses
 • Anomalies: Yes
 • Near Misses: Research needed

• Generate Candidate Explanations for Anomalies & Near Misses
 • Very little work: Research needed

• Improvise Solutions
 • Improvisational problem solving that extends or operates outside the system model
Assessment: Designing AI as an HRO

<table>
<thead>
<tr>
<th></th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situational Awareness</td>
<td>A mature methods</td>
</tr>
<tr>
<td>Detect Anomalies and Near Misses</td>
<td>B high-dimension, dynamics</td>
</tr>
<tr>
<td>Explain Anomalies and Near Misses</td>
<td>D only basic techniques</td>
</tr>
<tr>
<td>Improvise Solutions</td>
<td>F</td>
</tr>
</tbody>
</table>
Designing a Human + AI Team as an HRO

• Even very powerful AI systems will be surrounded by a human team

• Situational Awareness
 • AI can track the situation, but humans and AI must establish a shared mental model of the situation: Research needed
 • Humans must be aware of what version of the AI system they are using. When was it last updated/retrained? Research needed

• Detect Anomalies and Near Misses
 • AI system must understand and predict behavior of human team
 • AI and Humans must work together: interactive anomaly detection

• Generate Candidate Explanations for Anomalies & Near Misses
 • Very little work: Research needed

• Improvise Solutions
 • AI should support human improvisational problem solving: Research Needed
 • Example: mixed-initiative planning
Assessment: Human + AI HROs

<table>
<thead>
<tr>
<th></th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situational Awareness</td>
<td>C poor UI, poor communication</td>
</tr>
<tr>
<td>Detect Anomalies and Near Misses</td>
<td>C user feedback to anomaly detection</td>
</tr>
<tr>
<td>Explain Anomalies and Near Misses</td>
<td>D only basic techniques</td>
</tr>
<tr>
<td>Improvise Solutions</td>
<td>D mixed-initiative planning</td>
</tr>
</tbody>
</table>
Backup Material
Assurance by Construction

• Let \(f(x; \theta) \) be a predictive model parameterized by \(\theta \)

• Training data \(\{(x \downarrow 1, y \downarrow 1), \ldots, (x \downarrow N, y \downarrow N)\} \)

• Standard training

\[
\theta^{\uparrow*} := \arg\min_{\theta} \sum_{i=1}^{N} L(f(x \downarrow i; \theta), y \downarrow i)
\]

where \(L(y, y) \) is the loss function for predicting \(y \) when the true answer was \(y \)

• Robust (adversarial) training

\[
\theta^{\uparrow*} := \arg\min_{\theta} \max_{\delta \downarrow i \in \Delta} \sum_{i=1}^{N} L(f(x \downarrow i + \delta \downarrow i; \theta), y \downarrow i)
\]

where \(\Delta \) is a set of allowed perturbations (Goodfellow, et al., 2015; Madry, et al., 2018)

Equivalent, in some cases, to regularization methods
Assurance by Post Processing

• Given a trained f, post-process it to guarantee robustness

• Example: Stability Testing
 • Given query $x\downarrow q$, sample perturbations and predict y using majority vote
 • $f(x\downarrow q;\theta) = \text{orange}$
 • but the majority of perturbed points have $f(x\downarrow q + \delta) = \text{blue}$
 • so $y := \text{blue}$

• First method to give a guarantee on ImageNet (1000 classes)
 • Li, Chen, Wang & Carin, 2019, arXiv 1809.03113
Assurance by Rejection

• Construct a rejection function g
• Example: g produces a calibrated probability. If the maximum probability is too small, then reject
• This is a type of competence model

Classifier f

$p = \max_{j} g(p \downarrow ij)$

$p < \tau$

Argmax $\max_{j} g(p \downarrow ij)$
Assurance by Runtime Monitoring

• Construction-time guarantees assume test queries come from the same distribution as training queries

• This assumption rarely holds in practice
 • Changes in class probabilities (e.g., increase in cyberattacks)
 • Changes in input distribution (e.g., network traffic shifts)
 • Changes in the decision boundary (e.g., attackers try to hide)
 • New classes to predict (e.g., new kind of cyberattack)

• Data shift detection
 • Compare recent queries \{x_{\uparrow q1}, x_{\uparrow q2}, ..., x_{\uparrow qm}\} to training points \{x_{\uparrow 1}, ..., x_{\uparrow N}\}
 • Use two-sample tests:
 • typical sets, kernel maximum mean discrepancy, old-vs-new classifier

• Anomaly detection
 • \(A(x_{\downarrow q}) := -\log P(x_{\downarrow q})\), where \(P\) is the distribution of training points
 • Operates on single points => generates many false alarms
Open Category Guarantee

- Assume we know (a bound on) the proportion α of test queries that correspond to new classes “aliens”
- Then we can estimate a threshold τ that with high probability will detect $1-\epsilon$ of the aliens on new test queries
- Liu, Garrepalli, et al. ICML 2018

\[
P\downarrow m = (1-\alpha)P\downarrow 0 + \alpha P\downarrow \alpha
\]