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A Personal Perspec,ve on AI


• The	AI	community	has	always	been	

• Visionary	
• Broad	
• Inclusive	
• Interdisciplinary	
• Determined	

	

• And	dare	I	say	
• Successful	



A Personal View of Watershed Moments in AI: 
(I) 1980s


Scripts	Plans	Goals	
and	Understanding	

Roger	C.	Schank	and	Robert	P.	Abelson	



A Personal View of Watershed Moments in AI:  
1990s


1995:	Navlab	is	the	first	trained	car	to	drive	autonomously	on	highways	to	cross	the	United	
States	

1992:	Soar	flies	helicopter	teams	in	simula@ons	and	is	indis@nguishable	to	commanders	from	human-controlled	
aircraC	

1992:	TD-Gammon	autonomously	learns	to	play	backgammon	at	human	player	levels	

1990:	Sphynx	shows	speaker	independent	large	vocabulary	con@nuous	speech	recogni@on	–	used	it	to	write	my	PhD	thesis	

1997:	Deep	Blue	defeats	human	chess	world	champion	and	gets	grandmaster-level	ra@ng	

	h<ps://doi.org/10.1609/aimag.v16i1.1121	

	h<ps://www.cs.cmu.edu/afs/cs/project/alv/www/navlab_video_page_files/Navlab_Kanade_version97.mpg	

1999:	RAX	flew	a	spacecraC	autonomously,	demonstra@ng	planning,	monitoring,	and	fault	repair	

1995:	SKICAT	iden@fies	five	new	quasars	in	the	Second	Palomar	Sky	Survey	

h<ps://flic.kr/p/9Dpww	



A Personal View of Watershed Moments in AI:  
2000s


2003:	USC	ISI’s	sta@s@cal	machine	transla@on	prototype	beats	hand-craCed	commercial	systems		

2000:	The	Gene	Ontology	is	shown	to	describe	over	15,000	gene	products	for	drosophila,	mouse,	and	yeast	

2004:	RDF	seman@c	specifica@ons	become	W3C	recommenda@ons	for	the	GGG	(Giant	Global	Graph)	

2009:	Pragma@c	Chaos	ensemble	learning	wins	$1M	compe@@on	to	predict	user	film	ra@ngs		

2000:	Kismet	demonstrates	and	recognizes	emo@ons	

h<ps://commons.wikimedia.org/w/index.php?curid=374949	

2007:	Stanley	wins	$1M	for	first	autonomous	high-speed	off-road	driving	

h<ps://commons.wikimedia.org/w/index.php?curid=20798358	

2007:	First	robot	soccer	team	against	human	players	in	exhibi@on	game	at	RoboCup	



A Personal View of Watershed Moments in AI:  
2010s


2019:	Wikidata	records	8	billion	triples	and	over	880	billion	edits,	surpassing	Wikipedia	as	most	edited	Wikimedia	
site	

2013:	Cogni@ve	Tutor	shows	8	percen@le	points	average	improvement	in	algebra	in	25,000	students	study	

2012:	AIexNet	scores	improved	10	percentage	points	in	the	ImageNet	visual	recogni@on	challenge	

2011:	Watson	takes	first	place	in	Jeopardy	Q/A	game	defea@ng	two	human	champions	

2010:	Siri	voice-ac@vated	personal	assistant	is	released	as	a	smart	phone	app	

2011:	CMDragons	team	of	10	soccer	robots	coordinate	plays	for	rou@ne	passing,	intercep@on,	and	goal	
scoring	

h<ps://en.wikipedia.org/w/index.php?curid=54391045	

2016:	Knowledge	Graph	used	as	seman@c	backbone	in	one	third	of	100B	monthly	searches	

h<ps://www.youtube.com/watch?v=4QtBSDSC2pk	



Diversity and Breadth of Advances in AI


h<ps://commons.wikimedia.org/w/index.php?curid=70268939	

Percep.on	Vision	

Sensing	

Understanding	

Reasoning	

Representa.on	

Planning	
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Learning	
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Language	
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Search	

Ethics	

Knowledge	
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Explana.on	

Commonsense	

Constraints	



AI to Address Major Future Challenges




 
The Impera,ve for AI in Science




AI and Scien,fic Discovery


•  [Lenat	1976]	
•  [Lindsay	et	al	1980]	
•  [Langley	1981]	
•  [Falkenhainer	1985]	
•  [Kulkarni	and	Simon	1988]	
•  [Cheeseman	et	al	1989]	
•  [Zytkow	et	al	1990]	
•  [Simon	1996]	
•  [Valdes-Perez	1997]		
•  [Todorovski	et	al	2000]	
•  [Schmidt	and	Lipson	2009]	



Human Limita,ons Curb Scien,fic Progress [Gil DSJ’17]


• Not	systema.c	
•  e.g.,	[Peters	et	al	PLOS	2014]	

•  Errors	
•  e.g.,	[Herndon	et	al	CJE	2013]	

• Biases	
•  e.g.,	[Anderson	et	al	ACS	2014]	

• Poor	repor.ng	
•  e.g.,	[Garijo	et	al	PLOS	2013]	



h<ps://doi.org/10.1038/s41586-019-1335-8	h<ps://doi.org/10.1145/3339399	

h<ps://doi.org/10.1038/s41586-019-1923-7	

h<ps://arxiv.org/pdf/1910.06710	



http://commons.wikimedia.org/wiki/File:MRI_brain_sagittal_section.jpg 
http://commons.wikimedia.org/wiki/File:Earth_Eastern_Hemisphere.jpg 
http://www.nasa.gov/mission_pages/swift/bursts/uv_andromeda.html 



 
Capturing Scien,fic Knowledge




Scien,fic Knowledge


h<p://www.pihm.psu.edu/pihm_home.html	



Suppor,ng Composi,onality of Scien,fic Knowledge


Ø 		Data	formats	
Ø 		Physical	variables	
Ø 		Constraints	for	use	
Ø 		Adjustable	parameters	
Ø 		Interven.ons	
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Low-Cost Crea,on of Scien,fic Vocabulary Standards 
[Gil et al ISWC 2017; Khider et al PP 2019; Emile-Geay et al PAGES 2018]


Problem:	Diversity	of	requirements	for	metadata	
Approach:	Seman.c	technologies	used	for	
controlled	crowdsourcing	facilitate	crea.on	of	
community	standards	to	describe	highly	
heterogeneous	scien.fic	data	
•  Organic	growth:	As	scien.sts	annotate	their	
datasets,	they	propose	new	metadata	
proper.es	

•  Crowdsourcing:	Scien.sts	proposed	proper.es	
for	reuse,	vote	on	priori.es	

•  Editorial	oversight:	Editors	decide	what	
proper.es	will	be	in	future	versions	

Results:	A	new	standard	for	paleoclimate	(PaCTS	
1.0)	with	one	(!!)	single	ini.al	face-to-face	mee.ng	

h<ps://commons.wikimedia.org/wiki/File:An_ice_core_segment.jpg	

h<ps://commons.wikimedia.org/wiki/File:Gravity-corer_hg.png	

Work with Deborah Khider, Julien Emile-Geay, 
Daniel Garijo (USC); Nick  McKay (NAU) 



Controlled Crowdsourcing:  
Con,nuous Ontology Growth
 7 

 
Figure 2: Overview of the metadata annotation interface, with core ontology terms marked 
with an “L”. The properties under “Extra Information” are part of the crowd vocabulary. 

4.1 Annotation Framework: The Linked Earth Platform 

The Linked Earth Platform [21] implements the Annotation Framework as an exten-
sion of the Organic Data Science framework [9], which is built on MediaWiki [15] 
and Semantic MediaWiki [13]. There are several reasons for this. First, a wiki pro-
vides a collaborative environment where multiple users can edit pages, and where the 
history of edits is automatically tracked. Second, MediaWiki is easily extensible, 
allowing us to easily create special types of pages, generate dynamic user input forms, 
and create many other extensions. Third, because MediaWiki is well maintained and 
has a strong community, there are numerous plug-ins available. Finally, the Semantic 
MediaWiki  API makes it easy to export content and interoperate with other systems.  

Each dataset is a page in the Linked Earth Platform. “Dataset” is a special class, or 
category in wiki parlance. When a user creates a new page for a dataset, all the prop-
erties that apply are shown in a table where the user can fill their values. For each 
variable they indicate if it is observed or inferred, its value, uncertainty, and how it 
was measured. The order of the variables as columns in the data file is also specified. 

Figure 2 shows the metadata annotation interface for a lake sediment dataset. The 
user has provided some of the values of the metadata properties, others have not been 
filled out yet. The core ontology properties are shown at the top, and the crowd vo-
cabulary properties are shown near the bottom (under “Extra Information”). The user 
can also specify a new subcategory for this dataset, as shown at the bottom. 
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Figure 3: Overview of the main features of the Linked Earth Platform. 

 
When annotating metadata, the system offers in a pull-down menu the possible 

completions of what the user is typing based on similar terms proposed by other users. 
This helps avoid proliferation of unnecessary terms and helps normalize the new 
terms created. If none represents what the user wants to specify, then a new property 
will be added. The property becomes part of the crowd vocabulary, and a new wiki 
page is created for it. The user, or perhaps others, can edit that page to add documen-
tation. As a result, users build the crowd vocabulary while curating their own datasets. 

Figure 3 highlights the main features of the Linked Earth Platform. The map-based 
visualizations show datasets already annotated with location metadata. Author pages 
show their contributions, which help track credit and create incentives.  Other pages 
are devoted to foster community discussions and take polls. The annotation interface 
is designed to be intuitive, and provides detailed documentation with examples1.   

4.2 Initial Core Ontology 

To ensure that most changes would be crowd extensions that would not cause major 
redesigns of the core ontology, the initial core ontology was carefully designed. 

First, the ontology was developed using a traditional methodology for ontology en-
gineering [23]. We started by collecting terms to be included by the ontology in col-
laboration with a select group of domain scientists. These terms where extracted from 
examples provided by the community2, and from previous workshops where the 
community had discussed dataset annotation [4]. The ontology development process 
was also informed by previous efforts to represent basic paleoclimate metadata [14], 
and by prior community proposals to unify terminology in the paleo-climate domain 
[5].  

                                                             
1 http://wiki.linked.earth/Best_Practices 
2 https://github.com/LinkedEarth/Ontology/tree/master/Example 
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Figure 4: An overview of the core Linked Earth Ontology and its extensions. 

We also took into account relevant standards and widely used models. We used 
several vocabularies3: Schema.org and Dublin Core Terms (DC) for representing the 
basic metadata of a dataset and its associated publications (e.g., title, description, 
authors, contributors, license, etc.), the wgs_84 and GeoSparql specifications for rep-
resenting locations where samples are collected, the Semantic Sensor Network (SSN) 
to represent observation-related metadata, the FOAF vocabulary to represent basic 
information about contributors, and PROV-O to represent the derivation of models 
from raw datasets. 

Figure 4 shows an overview of the ontology, which is layered and has a modular 
structure. The existing standards just mentioned provide an upper ontology for basic 
terms. We used the LiPD format, mentioned in Section 2, to develop the LiPD ontol-
ogy4 which contains the main terms useful to describe any paleoclimate dataset (e.g., 
data tables, variables, instrument used to measure them, calibration, uncertainty, etc.). 
A set of extensions of LiPD cover more specific aspects of the domain. The Proxy 
Archive extension defines the types of medium in which measurements are taken, 
such as marine sediments or coral. The Proxy Observation extension describes the 
types of observations (e.g., tree ring width, trace metal ratio, etc.) that can be meas-
ured. The Proxy Sensor extension describes the types of biological or non-biological 
components that react to environmental conditions and reflect the climate at the time. 
The Instrument extension enumerates the instruments used for taking measurements, 
such as a mass spectrometer. The Inferred Variable extension describes the types of 
climate variables that can be inferred from measurements or from other inferred vari-
ables (e.g. temperature). The crowd vocabulary builds on these extensions. 

The core ontology and the crowd vocabulary share a common namespace for all 
the extensions (http://linked.earth/ontology/), in order to simplify querying as well as 

                                                             
3 http://schema.org/, http://dublincore.org/documents/dcmi-terms/, https://www.w3.org/2003/01/geo/wgs84_pos, 

http://schemas.opengis.net/geosparql/1.0/geosparql_vocab_all.rdf, https://www.w3.org/2005/Incubator/ssn/ssnx/ssn#, 
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn#, http://xmlns.com/foaf/spec/, http://www.w3.org/TR/prov-o/ 

4 http://wiki.linked.earth/Linked_Paleo_Data 



Living with a Live Ontology


Challenge:	Con.nuous	
revisions	of	ontologies	
+	annotated	data	
• Maintain	core	+	
crowd	ontology	

•  Editors	decide	when	
to	update	

•  Automated	
upgrades	when	
monotonic	
changes	

•  Semi-automated	
upgrades	when	
non-monotonic	
changes	

5 

 
Figure 1: Overview of our approach for controlled crowdsourcing. 

Figure 1 highlights the main aspects of the proposed controlled crowdsourcing 
process. There are three major components of the process: 1) annotation and vocabu-
lary crowdsourcing, shown at the top; 2) editorial revision for ontology extensions, 
shown at the bottom; and 3) updates to the metadata repository, shown on the right.  

An Annotation Framework supports the annotation and crowdsourcing process, 
shown in the top left of Figure 1. The framework is initialized with a core ontology 
(A). The core ontology represents a standard that the community has agreed to use. 
Users, which form the crowd (B), interact with a metadata annotation system (C) to 
select terms from the core ontology for annotating datasets (D). For example, a term 
such as “archive type” from the core ontology could be used to express that a dataset 
contains coral. If a term they want to specify is missing, users may propose extensions 
by simply adding the term, which becomes a property in the crowd vocabulary (E), 
That new term is immediately available to other users when they are annotating their 
datasets. Users may also have requests and issues (F), such as requests for changes to 
the core ontology, comments to discuss new proposed terms, and other issues. There 
are two main types of changes to the core ontology that users may request:  

a) Monotonic changes: these are proposed new terms for the core ontology that 
do not affect any prior metadata descriptions made by others. For example, a 
user may extend the ontology for coral and add the property “species name”. 

b) Non-monotonic changes: these concern existing terms in the core ontology or 
the crowd vocabulary that have already been used to describe datasets. For ex-
ample, a request to rename an existing property or change its domain/range.  

A Revision Framework supports the ontology revision process, shown at the bot-
tom of Figure 1. A select group of users form an editorial board (G) that is continu-



The Paleoclimate Community reporTing Standard (PaCTS)
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Workflows




Seman,c Workflows 
[Gil et al JETAI 2011; Gil et al IEEE IS 2011; Kim et al JETAI 2010; Gil IEMS 2014]

• Workflow	cons.tuents	
(step,	input	data,	results,	
parameters)	are	assigned	
an	iden.fier	that	can	be	
referenced	in	constraints	

•  Input	datasets	have	
metadata	that	can	be	
referenced	in	the	
constraints	

•  Constraints	are	used	to	
customize	a	workflow	to	a	
given	dataset:	

•  Set	parameters	
•  Generate	new	metadata	
•  Choose	steps	
•  Valida.on	

<dcdom:Hydrolab_Sensor_Data	rdf:ID=“Hydrolab-CDEC-04272011">	
			<dcdom:siteLong	rdf:datatype=“float">-120.931</dcdom:siteLongitude>	
			<dcdom:siteLa.tude	rdf:datatype=“float">37.371</dcdom:siteLa.tude>	
			<dcdom:dateStart	rdf:datatype=“date">2011-04-27</dcdom:dateStart>	
			<dcdom:forSite	rdf:datatype=”string">MST</dcdom:forSite>	
			<dcdom:numberOfDayNights	rdf:datatype=“int">1</dcdom:numberOfDayNights>	
			<dcdom:avgDepth	rdf:datatype=”float">4.523957</dcdom:avgDepth>	
			<dcdom:avgFlow	rdf:datatype=“float">2399</dcdom:avgFlow>	
</dcdom:Hydrolab_Sensor_Data>	

1)	Parameter	
segngs	

Owens-Gibbs Model 

O’Connor-Dobbins Model 

Churchill Model 

2)	Choice		
of	models	

<dcdom:Metabolism_Results		rdf:ID=“Metabolism_Results-CDEC-04272011">	
			<dcdom:siteLong	rdf:datatype=“float">-120.931</dcdom:siteLongitude>	
			<dcdom:siteLa.tude	rdf:datatype=“float">37.371</dcdom:siteLa.tude>	
			<dcdom:dateStart	rdf:datatype=“date">2011-04-27</dcdom:dateStart>	
			<dcdom:forSite	rdf:datatype=”string">MST</dcdom:forSite>	
			<dcdom:numberOfDayNights	rdf:datatype=“int">1</dcdom:numberOfDayNights>	
			<dcdom:avgDepth	rdf:datatype=”float">4.523957</dcdom:avgDepth>	
			<dcdom:avgFlow	rdf:datatype=“float">2399</dcdom:avgFlow>	
</dcdom:	Metabolism_Results>	

3)	Metadata	of		
new	results	



Example: Seman,c Constraints on Workflows


•  The	alignment	step	(TopHat)	and	the	
assembly	step	(Cufflinks)	must	be	done	
with	the	same	reference	genome		

•  Species,	build,	and	version	

hasDatasetID	 COADREAD	

hasGenomeReferenceID	 hg19	

hasOmicsType	 RNA	

hasPar.cipantID	 TCGA-A6-3807	

hasSpeciesName	 HS	

Data	

Step	

Constraint	



Abstrac,ons in Seman,c Workflows


MSGF+ 

X!Tandem 

Myrimatch 



WINGS: Workflow Composi,on 


http://wings-workflows-org 

Workflow	reasoning	algorithms	use	constraint-based	planning	
to	generate	executable	workflows	from	high-level	workflows	

Seed workflow from request 

unified well-formed req. 

Find input data requirements 

seeded workflows 

Data source selection 

binding-ready workflows 

Parameter selection 

bound workflows 

configured workflows 

Workflow instantiation 

Workflow grounding 

workflow instances 

Workflow mapping 

ground workflows 

executable workflows 

Workflow ranking 

top-k workflows 



Reproducing Work in Popula,on Genomics 
[Gil et al 2012]


Work with Christopher Mason (Cornell University) 

CNV Detection 
Variant Discovery from Resequencing 

Transmission Disequilibrium Test Association Tests 

Workflows for population genomics 



Learning Reusable Workflow Fragments 
[Garijo et al FCGS 2017; Garijo et al eScience 2014]


Work with Daniel Garijo (USC) and Oscar Corcho (UPM) 
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The W3C PROV Provenance Standard 
[Gil and Miles 2013; Groth and Moreau 2013; Moreau et al 2014]


h<ps://www.w3.org/2011/prov/	
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Reproducible	Research:		
Geophysics	Papers	of	the	Future	

www.scien,ficpaperoehefuture.org 
[Gil et al ESS 2016; Essawy et al EMS 2017; Goodman et al PLOS CB 2014]


Digital'Scholarship'

Provenance'and'methods:''
Work%low/scripts.specifying.

data%low,.codes,..
con%iguration.%iles,..

parameter.settings,.and..
runtime.dependencies.

Data:'
Include.data.as..

supplementary.materials.
and.pointers.to..
data.repositories.

Software:'
For.data.preparation,.data.
analysis,.and.visualization.

Open'Science'

Open'licenses:'
Open.source.licenses.for...

data.and.software..
(and.provenance/work%low).

Persistent'identi9iers:'
For.data,.software,.and.authors.
(and.provenance/work%low).

Sharing:'
Deposit.data.and.software..
.(and.provenance/work%low)..
in.publicly.shared.repositories.

Metadata:''
Structured.descriptions.of.the..

characteristics.of.data.and.software.
(and.provenance/work%low).

Citations:'
Citations.for.data.and.software.
(and.provenance/work%low).

Reproducible'Publication'

Text:'
Narrative.of.the.method,.
some.data.is.in.tables,.
.%igures/plots,.and.the..

software.used.is.mentioned.

Modern'Paper'

Geoscience'Paper'of'the'Future'Scientific Paper of the Future  

Neuroimaging, particularly using functional MRI 
(fMRI), has become the primary tool of human neuro-
science1, and recent advances in the acquisition and 
analysis of fMRI data have provided increasingly pow-
erful means to dissect brain function. The most common 
form of fMRI (known as blood-oxygen-level-dependent  
(BOLD) fMRI) measures brain activity indirectly 
through localized changes in blood oxygenation that 
occur in relation to synaptic signalling2. These changes 
in signal provide the ability to map activation in rela-
tion to specific mental processes, to identify functionally 
connected networks from resting fMRI3, to characterize 
neural representational spaces4 and to decode or predict 
mental function from brain activity5,6. These advances 
promise to offer important insights into the workings 
of the human brain but also generate the potential for 
a ‘perfect storm’ of irreproducible results. In particular, 
the high dimensionality of fMRI data, the relatively low 
power of most fMRI studies and the great amount of 
flexibility in data analysis contribute to a potentially high 
degree of false-positive findings.

Recent years have seen intense interest in the repro-
ducibility of scientific results and the degree to which 
some problematic, but common, research practices may 
be responsible for high rates of false findings in the sci-
entific literature, particularly within psychology but also 
more generally7–9. There is growing interest in ‘meta- 
research’ (REF. 10) and a corresponding growth in studies 
investigating factors that contribute to poor reproduci-
bility. These factors include study design characteristics 

that may introduce bias, low statistical power and flexi-
bility in data collection, analysis and reporting — termed 
‘researcher degrees of freedom’ by Simmons et al.8. There 
is clearly concern that these issues may be undermin-
ing the value of science — in the United Kingdom, the 
Academy of Medical Sciences recently convened a joint 
meeting with several other funders to explore these 
issues, and the US National Institutes of Health has an 
ongoing initiative to improve research reproducibility11.

In this Analysis article, we outline a number of poten-
tially problematic research practices in neuroimaging that 
can lead to increased risk of false or exaggerated results. 
For each problematic research practice, we propose a set 
of solutions. Although most of the proposed solutions 
are uncontroversial in principle, their implementation is 
often challenging for the research community, and best 
practices are not necessarily followed. Many of these solu-
tions arise from the experience of other fields with sim-
ilar problems (particularly those dealing with similarly 
large and complex data sets, such as genetics) (BOX 1). We 
note that, although our discussion here focuses on fMRI, 
many of the same issues are relevant for other types of 
neuroimaging, such as structural or diffusion MRI.

Low statistical power
The analyses of Button et al.12 provided a wake-up call 
regarding statistical power in neuroscience, particu-
larly by highlighting the point (that was raised earlier by 
Ioannidis7) that low power not only reduces the likeli-
hood of finding a true result if it exists but also raises 
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Interpolation
The operation by which  
a function is applied to the 
sampled data to obtain 
estimates of the data at 
positions where data have not 
been sampled.

Validation methodologies (such as comparing with 
another existing implementation or using simulated 
data) should be clearly defined. Custom analysis code 
should always be shared on manuscript submission 
(for an example, see REF. 58). It may be unrealistic to 
expect reviewers to evaluate code in addition to the 
manuscript itself, although this is standard in some 
journals such as the Journal of Statistical Software. 
However, reviewers should request that the code be 
made available publicly (so others can evaluate it) and, 
in the case of methodological papers, that the code is 
accompanied with a set of automated software tests. 
Finally, researchers need to acquire sufficient training 
on the implemented analysis methods, particularly so 
that they understand the default parameter values of 
the software (such as cluster-forming thresholds and 
filtering cut-offs), as well as the assumptions on the 
data and how to verify those assumptions.

Insufficient study reporting
For the reader of a paper to know whether appro-
priate analyses have been performed, the methods 
must be reported in sufficient detail. Some time ago, 

we published an initial set of guidelines for report-
ing the methods typically used in an fMRI study59. 
Unfortunately, reporting standards in the fMRI litera-
ture remain poor. Carp60 and Guo et al.61 analysed 241 
and 100 fMRI papers, respectively, for the reporting 
of methodological details, and both found that some 
important analysis details (such as interpolation meth-
ods and smoothness estimates) were rarely described. 
Consistent with this, in 22 of the 66 papers that we 
discussed above, it was impossible to identify exactly 
which multiple-comparison correction technique was 
used (beyond generic terms such as ‘cluster-based cor-
rection’), because no specific method or citation was 
provided. The Organization for Human Brain Mapping 
(OHBM) has recently addressed this issue through 
its 2015–2016 Committee on Best Practices in Data 
Analysis and Sharing (COBIDAS), which has issued a 
new, detailed set of reporting guidelines62 (BOX 4).

In addition, claims in the neuroimaging literature are 
often asserted without corresponding statistical support. 
In particular, failures to observe a statistically significant 
effect can lead researchers to proclaim the absence of an 
effect — a dangerous and almost invariably unsupported 

Box 4 | Guidelines for transparent methods reporting in neuroimaging

The Organization for Human Brain Mapping (OHBM) Committee on Best 
Practices in Data Analysis and Sharing (COBIDAS) report provides a set of 
best practices for reporting and conducting studies using MRI. It divides 
practice into seven categories and provides detailed checklists that can 
be consulted when planning, analysing and writing up a study. The text 
below lists these categories with summaries of the topics that are covered 
in the checklists.

Acquisition reporting
• Subject preparation: mock scanning; special accommodations; 

experimenter personnel

• MRI system description: scanner; coil; significant hardware 
modifications; software version

• MRI acquisition: pulse sequence type; imaging type; essential sequence 
and imaging parameters; phase encoding parameters; parallel imaging 
method and parameters; multiband parameters; readout parameters; 
fat suppression; shimming; slice order and timing; slice position 
procedure; brain coverage; scanner-side pre-processing; scan duration; 
other non-standard procedures; T1 stabilization; diffusion MRI gradient 
table; perfusion (arterial spin labelling (ASL) MRI or dynamic 
susceptibility contrast MRI)

• Preliminary quality control: motion monitoring; incidental findings

Pre-processing reporting
• General: intensity correction; intensity normalization; distortion 

correction; brain extraction; segmentation; spatial smoothing; artefact 
and structured noise removal; quality control reports; intersubject 
registration

• Temporal or dynamic: motion correction

• Functional MRI: T1 stabilization; slice time correction; function–
structure (intra-subject) co-registration; volume censoring; 
resting-state functional MRI feature

• Diffusion: gradient distortion correction; diffusion MRI eddy current 
correction; diffusion estimation; diffusion processing; diffusion 
tractography

• Perfusion: ASL; dynamic susceptibility contrast MRI

Statistical modelling and inference
• Mass univariate analyses: variable submitted to statistical modelling; 

spatial region modelled; independent variables; model type; model 
settings; inference (contrast, search region, statistic type, P-value 
computation, multiple-testing correction)

• Functional connectivity: confound adjustment and filtering; 
multivariate method (for example, independent component analysis); 
dependent variable definition; functional connectivity measure; 
effectivity connectivity model; graph analysis algorithm

• Multivariate modelling and predictive analysis: independent variables; 
features extraction and dimension reduction; model; learning method; 
training procedure; evaluation metrics (discrete response, continuous 
response, representational similarity analysis, significance); fit 
interpretation

Results reporting
• Mass univariate analysis: effects tested; extracted data; tables of 

coordinates; thresholded maps; unthresholded maps; extracted data; 
spatial features

• Functional connectivity: independent component analyses; graph 
analyses (null hypothesis tested)

• Multivariate modelling and predictive analysis: optimized evaluation 
metrics

Data sharing
• Define data-sharing plan early: material shared; URL (access information); 

ethics compliance; documentation; data format

• Database for organized data: quality control procedures; ontologies; 
visualization; de-identification; provenance and history; 
interoperability; querying; versioning; sustainability plan (funding)

Reproducibility
• Documentation: tools used; infrastructure; workflow; provenance trace; 

literate programming; English language version.

• Archiving: tools availability; virtual appliances

• Citation: data; workflow

ANALYS IS
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Software container
A self-contained software tool 
that encompasses all of the 
necessary software and 
dependencies to run  
a particular program.

acceptance of the null hypothesis. ‘Reverse inference’ 
claims, in which the presence of a given pattern of brain 
activity is taken to imply a specific cognitive process 
(for example, “the anterior insula was activated, sug-
gesting that subjects experienced empathy”), are rarely 
grounded in quantitative evidence63. Furthermore, 
claims of ‘selective’ activation in one brain region or 
experimental condition are often made when activa-
tion is statistically significant in one region or condi-
tion but not in others. This false assertion ignores the 
fact that “the difference between ‘significant’ and ‘not 
significant’ is not itself statistically significant” (REF. 64); 
such claims require appropriate tests for statistical 
interactions65.

Solutions. Authors should follow accepted standards 
for reporting methods (such as the COBIDAS stand-
ard for MRI studies), and journals should require 
adherence to these standards. Every major claim in 
a paper should be directly supported by appropriate 
statistical evidence, including specific tests for signif-
icance across conditions and relevant tests for interac-
tions. Because the computer code is often necessary to 
understand exactly how a data set has been analysed, 
releasing the analysis code is particularly useful and 
should be standard practice.

Lack of independent replications
There are surprisingly few examples of direct replica-
tion in the field of neuroimaging, probably reflecting 
both the expense of fMRI studies and the emphasis of 
most top journals on novelty rather than informative-
ness. Although there are many basic results that are 
clearly replicable (for example, the presence of activity 
in the ventral temporal cortex that is selective for faces 
over scenes, or systematic correlations within func-
tional networks in the resting state), the replicability 
of weaker and less neurobiologically established effects 
(for example, group differences and between-subject 
correlations) is nowhere near as certain. One study66 
attempted to replicate 17 studies that had previously 
found associations between brain structure and behav-
iour. Only 1 of the 17 attempts showed stronger evi-
dence for an effect as large as the original effect size 
than for a null effect, and 8 out of 17 showed stronger 
evidence for a null effect. This suggests that replica-
bility of neuroimaging findings (particularly brain–
behaviour correlations) is exceedingly low, as has been 
demonstrated in other fields, such as cancer biology67 
and psychology68.

It is worth noting that, although the cost of con-
ducting a new fMRI experiment is a factor limiting the 
feasibility of replication studies, there are many find-
ings that can be replicated using publicly available data. 
Resources such as the FCP-INDI26, the Consortium 
for Reliability and Reproducibility69, OpenfMRI70 
or the HCP20 provide MRI data that are suitable for 
attempts to replicate many previously reported find-
ings. These resources can also be used to answer ques-
tions about sensitivity of a particular finding to the data 
analysis tools used36. However, even in the cases when 

replications are possible using publicly available data, 
they are still few and far between, because the academic 
community tends to put greater emphasis on novelty of 
findings rather than on their replicability.

Solutions. The neuroimaging community should 
acknowledge replication reports as scientifically impor-
tant research outcomes that are essential in advanc-
ing knowledge. One effort to acknowledge this is the 
OHBM Replication Award, which is to be awarded for 
the first time in 2017 for the best neuroimaging replica-
tion study in the previous year. In addition, in cases of 
especially surprising findings, findings that could have 
influence on public health policy or medical treatment 
decisions, or findings that could be tested using data 
from another existing data set, reviewers should con-
sider requesting replication of the finding by the group 
before accepting the manuscript.

Towards the neuroimaging paper of the future
In this Analysis article, we have outlined a number of 
problems with current practice and made suggestions 
for improvements. Here, we outline what we would like 
to see in the neuroimaging paper of the future, inspired 
by related work in the geosciences71.

Planning. The sample size for the study would be deter-
mined in advance using formal statistical power analysis. 
The entire analysis plan, including exclusion and inclu-
sion criteria, software workflows (including contrasts and 
multiple-comparison methods) and specific definitions 
for all planned regions of interest, would be formally 
pre-registered.

Implementation. All code for data collection and analysis  
would be stored in a version-control system and would 
include software tests to detect common problems. The 
repository would use a continuous integration system 
to ensure that each revision of the code passes appro-
priate software tests. The entire analysis workflow 
(including both successful and failed analyses) would 
be completely automated in a workflow engine and 
packaged in a software container or virtual machine to 
ensure computational reproducibility. All data sets and 
results would be assigned version numbers to enable 
explicit tracking of provenance. Automated quality 
control would assess the analysis at each stage to detect 
potential errors.

Validation. For empirical papers, all exploratory results 
would be validated against an independent validation 
data set that was not examined before validation. For 
methodological papers, the approach would follow best 
practices for reducing overly optimistic results72. Any new 
method would be validated against benchmark data sets 
and compared with other state-of-the-art methods.

Dissemination. All results would be clearly marked as 
either hypothesis-driven (with a link to the appropriate 
pre-registration) or exploratory. All analyses performed 
on the data set (including those analyses that were not 
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On Reproducible AI: 
Towards Reproducible 

Research, Open Science, and 
Digital Scholarship in AI 

Publications 

  Odd Erik Gundersen, Yolanda Gil, David W. Aha 
 

n Artificial intelligence, like any science, must rely on reproducible experiments to validate results. Our 
objective is to give practical and pragmatic recommendations for how to document AI research so that 
results are reproducible. Our analysis of the literature shows that AI publications currently fall short of 
providing enough documentation to facilitate reproducibility. Our suggested best practices are based on 
a framework for reproducibility and recommendations for best practices given by scientific 
organizations, scholars, and publishers. We have made a reproducibility checklist based on our 
investigation and described how every item in the checklist can be documented by authors and 
examined by reviewers. We encourage authors and reviewers to use the suggested best practices and 
author checklist when considering submissions for AAAI publications and conferences.  

 
Reproducibility is a cornerstone of the scientific method. The ability and effort required from 
other researchers to replicate experiments and explore variations depends heavily on the 
information provided when the original work was published. Reproducibility is challenging 
for many sciences, for example when the variability of physical samples and reagents can 
significantly affect the outcome (Begley and Ellis 2012; Lithgow, Driscoll, and Phillips 2017). 
In computer science, a large portion of the experiments are fully conducted on computers, 
making the experiments more straightforward to document (Braun and Ong 2014). Most AI 
and machine learning research also falls under this category of computational 
experimentation. However, reproducibility in AI is not easily accomplished (Hunold and 
Träff 2013; Fokkens et al. 2013; Hunold 2015). This may be because AI research has its own 
unique reproducibility challenges. Ioannidis (2005) suggests that the use of analytical 
methods which are still a focus of active investigation is one reason it is comparatively 
difficult to ensure that computational research is reproducible. For example, Henderson et al. 
(2017) show that problems due to nondeterminism in standard benchmark environments 
and variance intrinsic to AI methods require proper experimental techniques and reporting 
procedures. Acknowledging these difficulties, computational research should be documented 
properly so that the experiments and results are clearly described.  
 The AI research community should strive to facilitate reproducible research, following 
sound scientific methods and proper documentation in publications. Concomitant with 
reproducibility is open science, which involves sharing data, software, and other science 
resources in public repositories using permissive licenses. Open science is increasingly 
associated with FAIR principles to ensure that science resources have the necessary metadata 
to make them findable, accessible, interoperable, and reusable (Wilkinson et al. 2016). 
Modern digital scholarship promotes proper credit to scientists who document and share 
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MINT: Model INTegra,on 
[Gil et al IEMS 2018; Garijo et al eScience 2019]

Collaboration with Daniel Garijo, Deborah Khider, Craig Knoblock, Ewa Deelman, Rafael Ferreira (USC/ISI), Vipin 
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h<ps://www.publicdomainpictures.net/en/view-image.php?image=256538&picture=agriculture-farming	
h<ps://commons.wikimedia.org/wiki/File:FEMA_-_43937_-_Flood_Damaged_Tennessee.jpg	 h<ps://www.pexels.com/photo/bird-birds-blue-sky-drought-1178291/	



Integrated Modeling


Mediation at 
many levels 

■  Takes	months/years	
■  Currently	a	craC	
■  Increased	demand	

Spatial 
gridding 

Data  
ingestion 

Variable 
mapping 

Model  
set up 

Modeling 
scope 

Economic 
Models 

Natural 
Models 

Social 
Models 

Infrastructure  
Models 

Agriculture 
Models 



Suppor,ng Composi,onality of Scien,fic Knowledge


Ø 		Data	formats	
Ø 		Physical	variables	
Ø 		Constraints	for	use	
Ø 		Adjustable	parameters	
Ø 		Interven.ons	

h<p://www.pihm.psu.edu/pihm_home.html	



Ontologies for Unambiguous Physical Variables


• Ontology	of	standard	scien.fic	names		
•  Eg	SSN:	watershed_outlet_water__volume_outflow_rate is	
more	precise	than	“streamflow”	or	“discharge”	

Work by Scott Peckham and Maria Stoica (CU) 



Diao,	X.	et	al.	DOI:	10.5772/47938	

h<p://www.scirp.org/journal/PaperInforma.on.aspx?paperID=76775	

Diao	et	al	DOI:10.5772/47938	

Temperature	

Land	use	 Aquifer	produc@vity	and	recharge	

Crop	prices	Precipita@on	

h<p://www.fao.org/giews/countrybrief/country.jsp?code=SSD	

Produc@on	

Agricultural	poten@al	

h<p://earthwise.bgs.ac.uk/index.php/Hydrogeology_of_Sudan	

Spa,al Datasets of Varying Quality




Automated Data Transforma,ons


Time	 Mesh	1	 Mesh	2	 ...	 Mesh	n	

1440	 3.595513	 6.534754	 ...	 3.771523	

2880	 3.595509	 6.534728	 ...	 3.771488	

4320	 3.595505	 6.534702	 ...	 3.771453	

...	 ...	 ...	 ...	 ...	

ROT	 DOY	 VARIABLE	 VALUE	

1	 1	 INFILTRATION	 0.0	

1	 1	 SATURATION_L1	 0.0	

1	 1	 SATURATION_L2	 0.012	

...	 ...	 ...	 ...	

Create	a	satura.on	file	
for	each	mesh	cell	pg.gw	file	 Cycles.REINIT	file	

pihm:SoilDepth_1	

3.595513	

1440	
1	

depth	
recordedAt	 meshId	

Create	a	data	graph	
for	each	cell	

Satura@on	
transforma@on	

cycle:Variable_1	

SATURATION_L1	
0.0	

1	

var_name	
value	 year	 1	

doy	

Write	the	data	
graph	as	a	row	

Hydrology	model	gives	depth	un.l	ground	water	 Agriculture	model	requires	satura.on	

Work by Craig Knoblock, Yao-
Yi Chiang Jay Pujara (USC) 



Crea,ng Virtual Gauges When No Data Available


Theory-guided data science 
incorporates biophysical 
laws into machine learning 
from remote sensing data 

Use of Data

U
se

 o
f S

ci
en

tif
ic

 T
he

or
y

Th
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ry
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 M
od

el
s

Data Science Models

Theory-guided
Data Science Models

Low High

High

Low

Th
eo
ry
'b
as
ed
,M

od
el
s

Data,Science,Models

Theory'guided,
Data,Science,Models

(TGDS)1

Corn	

Soybean	

Work by Vipin Kumar and Ankuah Khandelwal (UM) 



Mapping Models to Interven,ons and Decisions


Drivers	and		
adjustable		
parameters	

Model	parameters	
Crop	types	
Fer.lizer	

Plan.ng	dates	
Weed	factor		

Weather	

Land	use	
Soils		
Solar	radia.on	

Nitrogen	stress	

Response	
variables	

Crop	yield	h<ps://commons.wikimedia.org/wiki/File:Phosphorus_Cycle_copy.jpg	

Work by Armen Kemanian 
and Yuning Shi (PSU) 



Rich Representa,ons of Models


Model Catalog

Processes and Configurations: 

Data	formats	

Physical	variables	

Variables:

Constraints		

Adjustable	parameters	

Work with Daniel Garijo, Deborah Khider, 
Varun Ratnakar, Maximiliano Osorio (USC) 



MINT: From Models to Solu,ons


Processes and Configurations: 

Data	formats	

Physical	variables	

Variables:

Constraints		

Adjustable	parameters	

12

The models below generate data that includes the response variables that you selected earlier: European Flooding Index.  
Other models that are available do not generate that kind of result.

Identify variables of interest

Identify variables of interest

Compare models

1

2

3

13

Set up and run model

Adjust model to explore interventions, identify problem areas 

Prepare modeling 
products for analyst

4

5

6

• Subsidies for sorghum fertilizer will decrease sesame production
• If sorghum prices fall, sesame and maize production increase
• If sesame prices fall, groundnuts production will increase

Model Catalog

Work with Deborah Khider (USC); Suzanne Pierce and 
Lissa Pearson(UT); Chris Duffy and Lele Shu (PSU) 



Work with Suzanne Pierce, Daniel Hardesty Lewis, David 
Arctur Paola  Passalacgua (UT), David Tarboton (Utah 
State); Misty Porter, Mary Hill (KU) 

Model Portability: Data Scarce Regions

Height Above Natural Drainage Model (HAND)	

Ethiopia | Awash Basin 

Results provide first 
pass vulnerability for 
flood risk  
Pixels with colors on 
right of scale (brighter 
red) indicate higher 
change of inundation 
or flooding 



Work with Suzanne Pierce, Daniel Hardesty Lewis, David Arctur and Paola  Passalacgua (UT) 

Model Portability: Data Rich Regions


Combining	
•  Terrain	(10	m)	
•  Popula.on	
•  Urban	Land	Use		Comparison:	Williamson	County	

MINT	Generated	Vulnerability	Map	Manually	Constructed	Buyout	Map		

Travis	County	



 
A Perspec,ve on the Future




Tackling Complex Scien,fic Phenomena


Evolution of the scientific enterprise from [Barabasi, 2005] extended with the  
ATLAS Detector Project at the Large Hadron Collider [The ATLAS Collaboration, 2012]. 

Single authorship Co-authorship Large number of 
co-authors 

Community  
as author 



http://commons.wikimedia.org/wiki/File:MRI_brain_sagittal_section.jpg 
http://commons.wikimedia.org/wiki/File:Earth_Eastern_Hemisphere.jpg 
http://www.nasa.gov/mission_pages/swift/bursts/uv_andromeda.html 



Consider the Atlas Collabora,on


Atlas	collabora.on	
• Approximately	4,000	authors	
• Worked	in	subgroups	that	coordinated	
with	one	another	

• Collabora.on	lasted	many	years	

Today,	large	scien.fic	collabora.ons	take	
significant	.me	and	effort	and	therefore	
are	not	very	frequent	
How	can	we	change	this?	



The Importance of Process


http://www.thechessdrum.net/blog/2007/12/21/anson-williams-king-of-freestyle-chess/ 

“The winner was revealed to be not a grandmaster 
with a state-of-the-art PC but a pair of amateur 
American chess players using three computers at 
the same time. Their skill at manipulating and 
“coaching” their computers to look very deeply into 
positions effectively counteracted the superior 
chess understanding of their grandmaster 
opponents and the greater computational power of 
other participants.  
     Weak human + machine + better process was 
superior to a strong computer alone and, more 
remarkably, superior to a strong human + machine 
+ inferior process.”  
 

                          – Garry Kasparov, 2010 

Freestyle Chess Champion 
Anson Williams 



Future AI Systems as Partners for Discovery  
[Gil DSJ 2017]


Thoughtful AI: Principles for Partnership 
Rationality  Behavior is governed by explicit knowledge structures 

Context  Seek to understand the purpose and scope of tasks 

Initiative  Proactively learn new knowledge relevant to their task 

Networking  Access external sources of knowledge and capabilities 

Articulation  Respond with persuasive justifications and arguments 

Systems  Facilitate integration & collaboration with humans/systems  

Ethics Behavior that conveys scope and uncertainty 

These	are	important	research	challenges	for	AI	



Will AI Write the Scien,fic Papers of the Future?


Digital'Scholarship'

Provenance'and'methods:''
Work%low/scripts.specifying.

data%low,.codes,..
con%iguration.%iles,..

parameter.settings,.and..
runtime.dependencies.

Data:'
Include.data.as..

supplementary.materials.
and.pointers.to..
data.repositories.

Software:'
For.data.preparation,.data.
analysis,.and.visualization.

Open'Science'

Open'licenses:'
Open.source.licenses.for...

data.and.software..
(and.provenance/work%low).

Persistent'identi9iers:'
For.data,.software,.and.authors.
(and.provenance/work%low).

Sharing:'
Deposit.data.and.software..
.(and.provenance/work%low)..
in.publicly.shared.repositories.

Metadata:''
Structured.descriptions.of.the..

characteristics.of.data.and.software.
(and.provenance/work%low).

Citations:'
Citations.for.data.and.software.
(and.provenance/work%low).

Reproducible'Publication'

Text:'
Narrative.of.the.method,.
some.data.is.in.tables,.
.%igures/plots,.and.the..

software.used.is.mentioned.

Modern'Paper'

Geoscience'Paper'of'the'Future'Scientific Paper of the Future  

Common 
entities

Crowdsourced
vocabularies

Scientific data
repositories

Software and 
models

Data analysis 
processes

Collaborative
methods

Provenance

Automating
discoveries

Model
integration

Open reproducible
publications

Thoughtful AI: Principles for Partnership
Rationality Behavior is governed by explicit knowledge structures

Context Seek to understand the purpose and scope of tasks

Initiative Proactively learn new knowledge relevant to their task

Networking Access external sources of knowledge and capabilities

Articulation Respond with persuasive justifications and arguments

Systems Facilitate integration & collaboration with humans/systems

Ethics Behavior that conveys scope and uncertainty

YOUR	IDEAS	HERE!	



AI	as	co-author	

Spring	2016	January 2019

Formula,ng Grand Challenges


AI	as	research	assistant	AI	reproducing	ar.cles	



The Next Two Decades


2030:	AI	can	generate	and	test	sophis@cated	hypotheses	about	complex	physical	phenomena	

2025:	AI	can	generate	automa@cally	new	complex	scien@fic	analyses	using	open	data	

2030:	AI	can	reproduce	the	results	in	80%	of	the	ar@cles	in	a	scien@fic	journal	

2035:	AI	can	compare	scien@fic	experiments	and	papers	and	contrast	their	merits	

2025:	AI	detects	when	it	is	missing	knowledge	and	can	seek	and	read	new	scien@fic	papers	on	target	topics	

2035:	AI	can	describe	a	scien@fic	experiment	and	discuss	sophis@cated	aspects	of	it	

AI	as	co-author	AI	as	research	assistant	AI	reproducing	ar.cles	

2040:	AI	can	teach	advanced	theories	in	some	scien@fic	domain	effec@vely	to	students	

2040:	AI	can	formulate	research	ques@ons	and	generate	novel	contribu@ons	in	some	scien@fic	domain	

2030	 2035	 2040	



AI to Address Major Future Challenges




Diversity and Breadth of Advances in AI


h<ps://commons.wikimedia.org/w/index.php?curid=70268939	

Percep.on	

Vision	

Sensing	

Understanding	

Reasoning	

Representa.on	

Planning	

Predic.on	
Matching	

Learning	

Robo.cs	

Discovery	

Teamwork	

Dialogue	
Speech	

Language	

Cogni.on	
Search	

Ethics	

Knowledge	

Genera.on	

Crea.vity	

Explana.on	

Commonsense	



Will AI Write  
the Scien,fic Papers of the Future?


•  The	AI	community	
has	always	been	

•  Visionary	
•  Broad	
•  Inclusive	
•  Interdisciplinary	
•  Determined	

	

• And	dare	I	say	
•  Successful	

h<ps://www.flickr.com/photos/losalamosnatlab/22043600248	
http://www.thechessdrum.net/blog/2007/12/21/anson-williams-king-of-freestyle-chess/ 

So…	the	answer	may	be	yes?	



Will AI Write  
the Scien,fic Papers of the Future?


• AI	researchers	have	
been:	

•  Visionary	
•  Broad	
•  Inclusive	
•  Interdisciplinary	
•  Determined	

	

• And	dare	I	say	
•  Successful	

• Humans:	

•  Not	systema.c	

•  Errors	

•  Biases	

•  Poor	repor.ng	

h<ps://www.flickr.com/photos/losalamosnatlab/22043600248	
http://www.thechessdrum.net/blog/2007/12/21/anson-williams-king-of-freestyle-chess/ 

So…	the	answer	may	be	yes?	 So…	the	answer	is	definitely	yes?	



Will AI Write  
the Scien,fic Papers of the Future?


•  The	AI	community	
has	always	been	

•  Visionary	
•  Broad	
•  Inclusive	
•  Interdisciplinary	
•  Determined	

	

• And	dare	I	say	
•  Successful	

• Not	systema.c	

• Errors	

• Biases	

• Poor	repor.ng	

h<ps://www.flickr.com/photos/losalamosnatlab/22043600248	
http://www.thechessdrum.net/blog/2007/12/21/anson-williams-king-of-freestyle-chess/ 

Pennicillin	discovery		
resulted	from	human	error…		

Maybe	the	answer	is	no:		

So…	the	answer	may	be	yes?	 So…	the	answer	is	definitely	yes?	



Will AI Write  
the Scien,fic Papers of the Future?


•  The	AI	community	
has	always	been	

•  Visionary	
•  Broad	
•  Inclusive	
•  Interdisciplinary	
•  Determined	

	

• And	dare	I	say	
•  Successful	

• Not	systema.c	

• Errors	

• Biases	

• Poor	repor.ng	

h<ps://www.flickr.com/photos/losalamosnatlab/22043600248	
http://www.thechessdrum.net/blog/2007/12/21/anson-williams-king-of-freestyle-chess/ 

…and	humans	make		
unique	contribu.ons…	

Pennicillin	discovery		
resulted	from	human	error…		

Maybe	the	answer	is	no:		

So…	the	answer	may	be	yes?	 So…	the	answer	is	definitely	yes?	



Thank you!


•  Varun	Ratnakar,	Daniel	Garijo,	Deborah	Khider,	Maximiliano	Osorio,	Hernan	Vargas	(USC)	
•  Workflows:	Jihie	Kim,	Ewa	Deelman,	Karan	Vahi;	Rafael	Ferreira,	Rajiv	Mayani,	Hyunjoon	Jo,	
Yan	Liu,	Dave	Kale	(USC);	Ralph	Bergmann	(U	Trier);	William	Cheung	(HKBU);	Oscar	Corcho	
(UPM);	Pedro	Gonzalez,	Gonzalo	Castro	(UCM);	Paul	Groth	(UA);	Ricky	Sethi	(FSU);	Carole	
Goble	(UM);	Chris	Ma<mann,	Paul	Ramirez,	Dan	Crichton,	Rishi	Verma	(JPL);	Natalia	
Villanueva	(UTEP)	

•  Linked	Earth	and	Organic	Data	Science:	Julien	Emile-Geay,	Deborah	Khider	(USC);	Nick	McKay	
(NAU);	Felix	Michel	and	Matheus	Hauder	(TUM);	Chris	Duffy	(PSU);	Paul	Hanson,	Hilary	
Dugan,	Craig	Snortheim	(U	Wisconsin);	Jordan	Read	(USGS);	Neda	Jahanshad	(USC)	

•  Biomedical	workflows:	Phil	Bourne,	Sarah	Kinnings	(UCSD);	Chris	Mason	(Cornell);	Joel	Saltz,	
Tahsin	Kurk	(Emory	U.);	Jill	Mesirov,	Michael	Reich	(Broad);	Shannon	McWeeney,		Chris.na	
Zhang	(OHSU);	Parag	Mallick,	Ravali	Adusumilli,	Hunter	Boyce	(Stanford	U.)		

•  Geosciences	workflows:	Paul	Hanson	(U	Wisconsin),	Tom	Harmon	&	Sandra	Villamizar	(U	
Merced),	Tom	Jordan	&	Phil	Maechlin	(USC),	Kim	Olsen	(SDSU);	Suzanne	Pierce	(UT);	Chris	
Duffy	&	Armen	Kemanian	(PSU);	Sco<	Peckham	&	Maria	Stoica	(CU)	

•  And	many	others!	


