
Catalyzing Computing Podcast Episode 6 - Interview with
Keith Marzullo Part 1

Intro [00:00:10]

Khari: Hello, I'm your host, ​Khari Douglas​, and welcome to ​Catalyzing Computing​,
the official podcast of the ​Computing Community Consortium​. The Computing
Community Consortium, or CCC for short, is a programmatic committee of the
Computing Research Association​. The mission of the CCC is to catalyze the
computing research community and enable the pursuit of innovative, high-impact
research.

In this episode of Catalyzing Computing, I sit down with ​Dr. Keith Marzullo​, the
Dean of the ​College of Information Studies​, also known as the iSchool, at the
University of Maryland College Park. He joined the iSchool from the White House
Office of Science and Technology Policy​, where he directed the ​Networking and
Information Technology Research and Development Program​, or NITRD for short.
NITRD enables interagency coordination and cooperation among the over 20
member agencies, which together spend over four billion dollars a year in I.T.
R&D. Keith is a member of the CCC Council. In this episode, we discuss his
research, experience teaching, and time spent in the government. Enjoy.

I​nterview [00:01:14]

Khari: Keith, how are you today?

Keith: I'm great. How are you?

Khari: I'm good.​ ​So you've been on the CCC Council for a couple of years now.

https://cra.org/ccc/khari-douglas/
https://cra.org/ccc/
https://cra.org/ccc/
https://cra.org/
https://ischool.umd.edu/faculty-staff/keith-marzullo
https://ischool.umd.edu/
https://www.whitehouse.gov/ostp/
https://www.nitrd.gov/
https://www.nitrd.gov/

Keith: I have.

Khari: How did you first get into computer science? Where did you grow up? How
did you decide to study that?

Keith: Yeah. So I grew up in Southern California and I was interested in astrophysics.

For me, programming was entertainment, something I could do. When I was in

highschool, I taught myself ​Fortran IV​ and we had an ​IBM 1401 ​computer, which is like

an ancient mainframe computer, generation two. And when I played with that I realized

that I could have it run more quickly if I programmed it in assembly language -- it was

called ​Autocoder​.

That's why I got into the machine architectures of this extremely primitive machine, and

so I continued to support myself through college programming. I did programming at my

data processing facility at the college. I did programming at the ​Jet Propulsion

Laboratories​ (JPL), things like that.

Khari: Okay, so what kind of programming was this like at the time? How does it
compare to today?

Keith: Pretty simple compared to what we do today. I programmed up a meal card

system so that students would be able to use meal cards to charge for their meals. That

was a radical idea at the time.

[Laughter]

Khari: It's like a swipe card kind of thing?

Keith: Oh God, no. This was actually more of a fill in the bubble card.

https://en.wikipedia.org/wiki/Fortran#FORTRAN_IV
https://en.wikipedia.org/wiki/IBM_1401
https://en.wikipedia.org/wiki/Autocoder
https://www.jpl.nasa.gov/
https://www.jpl.nasa.gov/

[Laughter]

Keith: It was really primitive. We didn't have magnetic readers that were cheap at that

time. It worked ok -- clearly technology had to catch up.

Then at JPL I ended up programming various scientific experiments. I did the

spectrometer on the ​Viking Orbiter.​ They were looking for water, we were looking for

water, and so I ended up programming the data analytics that went along on the

spacecraft.

Khari: Oh, wow.

Ketih: And that was on a NOVA 18-bit machine. It was really great. And then I also did

programming on the ​Voyager​, did some of the data reduction on that. So I guess I'm

involved in...my code’s not on the spacecraft, so it does not pass the ​heliopause​, but at

least the thing I worked on has passed the heliopause.

[Laughter]

Khari: Pretty cool.

Keith : Yeah.

Khari: So why did you switch, I guess, from like astrophysics to doing more of
the computer science stuff?

Keith: Jobs. Getting a job in astrophysics was pretty hard at the time and I realized that I

really love programming. I loved not just programming, but also thinking about

computation. So I got pulled into some research at Stanford University, that's where I

was a graduate student in astrophysics, and started working with a guy named ​Mike

http://www.tsgc.utexas.edu/spacecraft/viking/profile_vik1orb.html
https://voyager.jpl.nasa.gov/
https://en.wikipedia.org/wiki/Heliosphere
http://arith.stanford.edu/~flynn/

Flynn​. He was interested in different kinds of architectures, ​MIMD​, ​SIMD​ at the time --

he came up with those terms -- and I enjoyed that. But then I got involved with ​Susan

Owicki​ and formalism, how do you prove concurrent programs correct? And that was

just beautiful stuff, so I got pulled into the formal side of things.

Khari: So while you're at Stanford, you worked with Xerox on the Xerox Research
Internet?

Keith: I did, yeah.

Khari: Can you talk a little bit about how you got involved with that and anything
interesting that came out of that?

Keith: Absolutely, that was a lot of fun. So Xerox at the time was inventing the Internet,

their version of the Internet, the Xerox Research Internet, and I was part of the project

called Pilot. Pilot was an operating system and I was a research intern, which meant

that I had very little responsibility. As my boss said, they could fire me at any time.

[Laugher]

Keith: So it was quite liberating, like being a midshipman, you know. So I got to know

the people doing communications. Alan Frier, Susie Armstrong, the whole group there,

who were coming up with a suite of protocols that were in parallel to what we use now,

like ​TCP/IP​, but we were building this worldwide network. We had two ​Altos​, these old

kinds of computers, that were in the same room, but they were separated by 15 hops,

which at the time was as large as you could make the network.

Khari: Okay what is a hop?

http://arith.stanford.edu/~flynn/
https://en.wikipedia.org/wiki/MIMD
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Susan_Owicki
https://en.wikipedia.org/wiki/Susan_Owicki
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Altos_Computer_Systems

Keith: A ​hop​ was every time you went through a router, that was a hop, it would call a

local area network. This is long before we had pairing agreements and things like that.

And so we were able to experiment with, at the time, huge networks like, you know,

thousands of computers.

Khari: Really?

Keith: Yeah.

Khari: Wow. And what year was this?

Keith: This was a... oh, my gosh... I got my Ph.D. in ‘84... and I was a Ph.D student for a

long time, like nine years... So this would have been like 1979-1980.

Khari: That's pretty cool. So what kind of stuff could you do on this Internet?
What was it used for?

Keith: Yeah, it was such a cool time. Research and systems goes through this virtuous

cycle between having really great hardware and the software is behind, so you're trying

to catch up, and then having really great software ideas and trying to have the hardware

catch up. We were definitely in the first case. We were building these systems that were

awesome in terms of hardware, I mean we had flat panel displays... or now they weren’t

really flat panels, but they were bitmap designs, that's what I wanted to say. And we had

servers, like file servers and print servers.

So it was distributed and we were netting things like, oh, remote procedure call -- Ruth

Nelson was doing that work -- and so we were trying to figure out how to build these

large distributed systems. Of course, that is now what we live in and the whole web

architecture, we've well caught up to that. But at the time we were really trying to sort

out what this new world would be like with a distributed environment.

https://en.wikipedia.org/wiki/Hop_(networking)

Of course now...well we've rotated now and with the cloud, with 5G, with all these edge

computing, edge devices, I kind of think we're in a similar state now where we have this

incredible computing environment -- cluster computing, cloud computing, edge devices

-- and we're trying to figure out what we can do with it. The answer is, of course, a lot.

Everything from environmental monitoring to, well, everything in global commerce. And

again, we're now at this point where we're sort of ahead in the hardware and trying to

catch up in the software. This, by the way, came out of the CCC report [by] ​Mark Hill​.

Remember that report they did a few years ago on architecture?

Khari: Oh yeah.

Keith: It actually made that point.

 ​Khari: ​21st century architecture​? I’m not sure if that's the exact name, but yeah.

Keith: That was a great report.

Khari: Yeah, so I was taking a look at your, I think this is your dissertation, about
Maintaining Time in a Distributed System​. So is this where you came up with
Marzullo’s Algorithm​?

Keith: I didn't call it that.

[Laughter]

Keith: But yes, that's where Marzullo’s algorithm came from.

Khari: Can you explain Marzullo's Algorithm and explain how you came up with
your dissertation -- the process of doing that research?

http://pages.cs.wisc.edu/~markhill/markhill.html
https://cra.org/ccc/wp-content/uploads/sites/2/2015/05/21stcenturyarchitecturewhitepaper.pdf
https://dl.acm.org/doi/10.1145/800221.806730
https://en.wikipedia.org/wiki/Marzullo%27s_algorithm

Keith: Sure. So when I was looking for a dissertation topic, I went to one of my advisors,

Hugh Lauer​, and said I wanted to do distributed debugging. How do you debug

distributed programs? And Hugh said, “Well, have you ever written a distributed

program?” The answer was no.

[Laughter]

Keith: So he said, “Well, how can you learn how to debug it, if you haven't written one?”

Which is a really good point. So he handed me a paper on clock synchronization and

said, “Why don't you look at this?” And so I got pulled into the world of synchronizing

clocks, which is a classic problem. At one point it seemed like everyone in distributed

algorithms spent part of their life doing clock synchronization. So that's what I was

doing.

I had the fortunate situation that I could build something that could be deployed on the

research Internet. That was great. And after some discussions I had with the people at

Xerox PARC -- ​Dave Bogs​ was really great in this -- I started thinking about

synchronization as a kind of averaging; a fault tolerant averaging problem. And rather

than thinking about clocks being point values, like saying it's 2:15, think of clocks as

saying, well, it's between 2:13 and 2:17. So you have values, these errors, and the

errors you can think of them statistically, and it's not a bad way to do so, but I was

thinking about them absolutely. Saying, “If you take all the things you know about this

system give me an absolute bound on what the time might be.” And of course, you

might be wrong in those assumptions but you want to at least bound them in some way.

Khari: Right.

Keith: And so then what you're doing is you're looking at a problem of how do you

synchronize intervals. How do you look at different intervals and find an interval that is

https://web.cs.wpi.edu/~lauer/
https://en.wikipedia.org/wiki/David_Boggs

the best estimate you can make given the constraints you have? On the assumptions

you have, such as no more than two out of five values would be incorrect? That's what

Marzullo’s algorithm is. It's an algorithm for taking intervals and a maximum number of

failures and saying, “What is the tightest interval that you can compute based on that?”

It's like a version of voting. You know, if you think of the Von Neumann​ ​concept of

voting​, ​triple modular redundancy​. If you have one possible erroneous line, then you

triplicate it and two values that are the same are correct because you know, you have

no more than one wrong. So I basically took that idea and generalized it to intervals.

Khari: So is this algorithm still being used for computing error in distributed
systems like in clocks?

Keith: So when I talked to ​[David] Mills​, who built up ​NTP​ -- this was a while ago -- it

was still being used. Yeah, so the idea is still around, and it was embedded in some

algorithms. Every now and then I get messages from people wanting to know more

details about it and such. So yeah, I still think it's used. We've moved far past that. I

mean, even some of the stuff we did, we generalize it to multiple dimensions. That was

a lot of fun. And I think people are using more statistical approaches now. There's

actually a nice way to take this work and have it work in a statistical way,

Khari: OK. So what would be the difference in terms of using it in a statistical
way?

Keith: So this gets technical sort of fast.

[Laughter]

But if you can think of, say, a value that you read from a clock has some distribution

associated with it. It lives within a certain value which can be long-tailed. And then you

https://www.britannica.com/science/game-theory/The-von-Neumann-Morgenstern-theory
https://www.britannica.com/science/game-theory/The-von-Neumann-Morgenstern-theory
https://en.wikipedia.org/wiki/Triple_modular_redundancy
https://en.wikipedia.org/wiki/David_L._Mills
https://en.wikipedia.org/wiki/Network_Time_Protocol

can look at the convolution of those values and ask what is the value given a certain

probability. That's the statistical approach. You can actually also interpret this as fuzzy

logic if you want to, that's another approach. They’re actually all related in some

interesting ways.

Khari: So after you did your dissertation, what did you do next?

Keith: Yeah, I worked for a while at Xerox. Um, I ended up doing some work on

software configuration management, we were doing all these software releases, and I

got involved in that, but I was interested in going into academics. So I did that for maybe

a year or two and then I moved to Cornell University as an Assistant Professor. I had

made a friend, ​Fred Schneider​, and he did a good job of selling me about the great

things at Cornell University, despite it being in upstate New York.

[Laughter]

Keith: Actually, it is really nice and I think it is a great place to be. Not so much in the

winter, but otherwise it's a great place to be and I really enjoyed my time there.

Khari: How long did you teach there for?

Keith: Oh, about six years, I think...yeah. And then due to issues of, like, jobs for my

wife, we moved to San Diego and then I went to UC San Diego, where I was at for like,

19 years or something.

Khari: So what kind of classes were you teaching while you were at Cornell and at
San Diego?

Keith: When I started, the chair at the time, ​David Gries​, handed me a database class

and said, “Keith, you're a systems person. Databases are systems aren't they? Teach

https://www.cs.cornell.edu/fbs/
https://www.cs.cornell.edu/gries/

this database class.” Which I did and I actually didn't know anything about databases,

except I'd taken a class from ​Jeff Ullman​ at Stanford.

So that was fun, getting up to speed fast on that. In fact, there was this whole thing on

normalization theory. I'm not going to get too technical, but this has to do with how you

encode data and what happens when you do database operations, do you lose

information or not. And I remember I just did not understand what Jeff was talking

about. No idea, in fact, I don't think any of us did. So when I was teaching that at

Cornell, I had to either sort of, you know, futz my way through it or really learn it, which

is what I did. Actually, normalization is really beautiful, it's sort of like type theory in

that...

Khari: What is ​type theory​?

Keith: Type theory is how you, when you assign types to a language, how you're able to

then induce properties of the program based on type correspondence. In this case, the

types have to do with how you represent data. What is the format of the scheme of the

table and what is the underlying semantics. So I got really excited and I told my

students, you're going to love this. You're going to learn normalization theory and you're

going to be amazed. And my students all hated it, just hated it.

[Laughter]

Keith: They couldn't understand a thing I was saying. So I sent a message to Jeff

Ullman apologizing, saying, “I didn't realize it was so darn hard.” So then I ended up

teaching operating systems, which, by the way, is more my area of interest. I taught that

for several years.

Khari: So that's like how to build an operating system?

http://infolab.stanford.edu/~ullman/
https://en.wikipedia.org/wiki/Type_theory

Keith: Yeah, it's certainly how to build an operating system. It's more how to think in

terms of systems. Systems thinking is really important because you have to look at both

the low level details and the high level details. They all come together, sort of the

worm's eye view versus the bird's eye view of systems. Are you managing resources, or

are you providing abstractions? And so systems is teaching those concepts, which

operating systems are an embedment of, but there are other kinds of systems as well,

indeed deep database systems are systems. David Gries was right.

My favorite part of it, though, was concurrency. Since I had done work in concurrency

as a graduate student and understanding the beauty of the mathematics underlying

concurrency was my favorite part of it. I don’t know if it was my students’ favorite part of

it, but it was my favorite part.

[Laughter]

Khari: So after you got done teaching at San Diego, that's when you joined ​NSF
or ​NITRD​. Which one came first?

Keith: Uh, NSF did. Yeah, I had been chair for five years. We needed a new chair and it

seemed like a great idea to get out of town and let the new chair have a complete run.

I'd been talking with ​Jeannette Wing​, she had been encouraging me to think about the

National Science Foundation. So in 2010, I moved to the National Science Foundation

as Division Director of ​Computer and Network Systems​.

Khari: That's within ​CISE​?

Keith: Right, that’s within the Computer Information Science Engineering Directorate.

Khari: So what kind of projects did you work on while you're at NSF?

https://www.nsf.gov/
https://www.nitrd.gov/
https://datascience.columbia.edu/director-jeannette-wing
https://www.nsf.gov/div/index.jsp?div=CNS
https://www.nsf.gov/dir/index.jsp?org=CISE

Keith: So as a division director, it's sort of like being a department chair. So they'd like to

say the best projects are at the program director level and that's sort of like the

professor level. And it's true because they're the ones who get to look at all the grants,

call up the person, say congratulations we’re funding your grant, and all that great kind

of stuff. And they have a lot to say in the science. The next level up, we do a lot of

program work. How do you come up with new programs? For example, I don't know if

you've ever read the federal budget? It's riveting reading.

[Laughter]

Khari: Certainly, not in its entirety.

Keith: Yeah, I don't think anyone does. But there is part of the budget that's the National

Science Foundation and in there you have, like, what is NSF going to do in three years

and five years and so on. I wrote the text for CNS. That's what division directors do. We

work with the directorate to plot out the directions of the division and therefore the

direction of CISE.

My favorite project was one of the earliest ones. The White House through ​OSTP​, the

Office of Science Technology Policy, was encouraging us to develop a joint program in

cybersecurity with ​Social, Behavior, and Economic Sciences​ (SBE), that directorate, as

well as with ​Mathematics​ and with the ​Office of Cyber Infrastructure​. The idea was --

due to us changing the plan they published -- was that there were economic incentives

that one could use to help change the basis of cybersecurity and that's true.

Everything from insurance, to understanding economic principles underlying the kinds of

things people do, and so I was given the task of working with my colleagues over in

SBE to craft a program that would allow us to share funds or at least share the reviews

so that we could fund things together or fund things in a coordinated way. And the two

cultures are really, really different. Social scientists, computer scientists are quite

https://www.whitehouse.gov/ostp/
https://www.nsf.gov/dir/index.jsp?org=SBE
https://www.nsf.gov/dir/index.jsp?org=MPS
https://www.nsf.gov/div/index.jsp?div=OAC

different and trying to come up with a program that would work across both divisions

was a challenge.

Keith: What kind of differences do you see across those areas?

Keith: At a very high level, and I'm going to be oversimplifying here, but just to make a

point, computer scientists like to solve problems. They're for the most part engineers,

some people are mathematicians, but for the most part engineers. They want to come

up with a cool solution to a problem. And social scientists are scientists. They want to

understand things, they want to have theories and make hypotheses and see what they

can conclude from that. And solving problems and understanding science, while they

can work hand in hand, they really have a different set of values.

I think the social scientists often look at computer scientists and say, “Where's the

theory? What are you learning from this?” And the computer scientists may look at the

social scientists and say, “Well, who cares? Don't you want to solve problems? Don't

you want the world to be a better place?” Things like that. That in a nutshell is the

tension between the two.

Khari: So then in terms of the proposals you were receiving, were there big
discrepancies as far as what people wanted to address or or how they wanted to
go about tackling these problems?

Keith: So...yeah, and there were certainly proposals that went into the social sciences,

and they funded those, and there were ones that went into CISE, and we funded those,

but the trick was trying to find proposals that we could fund together. We created this

one program that I think worked very well towards that.

NSF has a vehicle called ​EAGERs​ and I don't remember what EAGER stands for...

Early Research… or I don’t know. Basically, it's a proposal that you can write. It's for no

https://www.nsf.gov/pubs/policydocs/pappguide/nsf09_1/gpg_2.jsp#IID2

more than two years and no more than $300,000 and it's decided only on the basis of a

program officer -- it doesn't have to go to a panel. They're meant to be a vehicle for

funding, higher-risk, higher-reward research that wouldn't do well in a panel because it's

too off the wall, but if you did it right, it'd be great. So we created an EAGER program in

which we engineered it. We said you had to have some social scientists and you had to

have some computer scientists, and they had to have not worked together before, and

they had to propose a joint project. Out of this then we got some interesting

conversations going on between social scientists and computer scientists.

We would first take white papers, and out of those we would accept about half of them

and those half would then go on to submit proposals and out of those we would take

about half of those. So roughly 25% of each attempt would get funded, which is not bad,

and there was feedback the whole way so people could try again. And the results were

good. We got a lot of good papers out of it, new partnerships out of it, and they were

doing really interesting things.

One project was to put ethnographers -- so these are social scientists who study how

people behave -- and they put them in security rooms, basically groups of people who

are trying to keep the systems of business safe and secure and understanding what

were the rules they were using and try to write that down because much of the activity

they were doing is not written down, it's just behaviors. And it was kind of cool. There

was also things on passwords and such as you'd imagine.

Khari: So what was the process, because you said people had to not know each
other first. What was the process to pair people up?

Keith: Oh yeah, if I said that, no, that isn't quite right. They couldn't have published

together.

 Khari: Ok.

Keith: So obviously they knew each other. Yeah, that would've been cool… take people

at random. No, but they had to know each other, just that they couldn't have published

together. The idea was to create new collaborations.

Khari: So then from NSF you went to NITRD?

Keith: I did, yeah.

Khari: What was the decision behind that move?

Keith: When I was at the National Science Foundation, at some point I converted over

to being a Fed. So normally when you go to NSF -- most people when they go I should

say, not normally -- they go under what's called an IPA, ​interagency personnel

agreement​ I think is what it stands for, and what it basically does is it allows you to stay

working at your old job like a professor and then they pay your salary by going back and

effectively giving what looks a lot like a grant to your university. So your salary is

covered, your health care is covered and everything, but you're now full-time at NSF or

some other agency. Other agencies do this too. But at some point I converted over to

being full-time. You can only be an IPA for up to four years and I was really enjoying

what I was doing, so I converted over to being a Fed.

Shortly after that, there was a need to have someone take over NITRD. ​George Strawn​,

who had been running it for a while, was about a year from retirement and so they were

looking for ways to get someone else to take it on, and since I had done so much work

in the interagency anyway -- through my job as Division Director I had done a lot

through our ​Cyber-Physical Systems​ program with other agencies -- they thought I

might enjoy it, thought I might be good at it. So I applied and I interviewed and I got the

job.

https://www.opm.gov/policy-data-oversight/hiring-information/intergovernment-personnel-act/
https://www.opm.gov/policy-data-oversight/hiring-information/intergovernment-personnel-act/
https://www.nitrd.gov/About/history/bios/George-Strawn-bio.pdf
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286

So it's a very different kind of job, right? Working at NSF you're really close to the

science, at NITRD you're really close to agencies. You're working at the interagency

and you're trying to find ways to have different agencies align what they do, be able to

cooperate, to be able to do things together, and agencies have really different cultures.

NSF people are very different from NASA people, who are very different from

transportation people, who are way different from education people. They all have their

own rhythms, their own way they think about what they do and so in NITRD the idea is

to get these groups together to cooperate on things like big data, networking,

cybersecurity, privacy, robotics, things like that.

Khari: Ok, so what would the day of the NITRD Director look like?

Keith: Like everything in the government, hectic. NITRD runs a lot of these working

groups and so some of it would be me going to working group meetings just to

understand what the agencies were doing -- remarkably little of that.

Some of it was talking with people in different agencies to see what we could do to start

new activities. Part of it was over in the White House meeting with other members of the

office of technology policy, there's other coordination groups to see what we could do

together. Gosh, it's a blur.

[Laughter]

Keith: We were moving really fast at the time. This was near the end of the second term

of President Obama and he was running through the tape, trying to get everything done

before the administration was handed it over to the next president. And so part of what

we were doing was getting these strategic plans written in ​cyber security​, in ​privacy​, in

big data​ and ​artificial intelligence ​and I was doing a lot of the, kind of, getting the people

in the right places to do those activities successfully.

https://www.nitrd.gov/cybersecurity/
https://www.nitrd.gov/cybersecurity/NationalPrivacyResearchStrategy.aspx
https://www.nitrd.gov/Publications/PublicationDetail.aspx?pubid=63
https://www.nitrd.gov/news/national_ai_rd_strategic_plan.aspx

Khari: Ok. How do you think computer scientists should interact with
policymakers, who might not be experts, but need to know to make critical policy
decisions that will impact how technology interacts with society?

Keith: So how is an interesting question, you can interpret that in different ways. I mean,

procedurally, how do you get the knowledge of a computer scientist in front of

policymakers, that can be hard. ​Latanya Sweeney​, a professor at Harvard, has some

great ideas on that. Much of them involve training computer scientists to go work in

places like the ​FTC​, who are basically a bunch of lawyers, or at least they have a lot of

lawyers on staff, and having the technologists be able to inform those lawyers about

technology.

So the example that Latanya uses is that if I record you with my smartphone it's ok for

me to visually record you but to record your voice that depends on the state. Do I need

your consent or not? And so the laws as they are currently written don't mesh

necessarily very well with the technology, so having someone who understands what

can or cannot be done is very important to policymakers.

Khari: I did not know that. So you can record someone visually anywhere -- I
mean I assume outside of the bathroom or whatever -- in a public space, but not
necessarily the audio?

Keith: Audio recording is more ticklish and more sensitive than video recording, if I

remember the argument Latanya made. Wwe're gonna look that up…

Yeah, that's true. The legal structure for recording someone depends on the state and I

think that the way Latanya explained it to me is the audio part.

Khari: [From] Homevid.com [note: website no longer exists], I don't know what
that is, but [it says that] in general, most video-only recordings are legal whether

https://www.iq.harvard.edu/people/latanya-sweeney
https://www.ftc.gov/

you inform the persons you are recording them or not provided their privacy is
not invaded.

Keith: Just what you said.

Khari: Recording audio without the subject’s permission is almost always illegal,
but may be legal in certain situations.

Keith: There you go.

Khari: Yeah, that is actually pretty crazy, I guess. Yeah, that does not reflect the
current state of technology at all. So that definitely seems like something that
maybe should be updated or at least considered how that has evolved.

Keith: Yeah, there was this other... Well there are a lot of examples of where policy

decisions are made that don't reflect technology and we clearly need to find ways to

increase those conversations.

Outro [00:28:03]

Khari: That's it for this episode of the podcast, I hope you enjoyed it. Tune in next
week as ​I continue my conversation with Keith Marzullo​ as we discuss his current
work at University of Maryland's iSchool. We also discuss the impact of
technology on society and the role the social sciences has to play in designing
computing systems. Until next time. Peace.

https://cra.org/ccc/podcast/#episode7

