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1. Executive Summary
Protecting embedded security is becoming an increasingly challenging research problem for embedded systems due to a number 

of emerging trends in hardware, software, networks, and applications. Without fundamental advances in, and an understanding 

of embedded security it will be difficult for future engineers to provide assurance for the Internet of Things (IoT) and Operational 

Technology (OT) in wide ranging applications, from home automation and autonomous transportation to medical devices and 

factory floors. Common to such applications are cyberphysical risks and consequences stemming from a lack of embedded 

security. The Computing Community Consortium (CCC) held a one-day visioning workshop to explore these issues. The workshop 

focused on five major application areas of embedded systems, namely (1) medical/wearable devices, (2) autonomous systems 

(drones, vehicles, robots), (3) smart homes, (4) industry and supply chain, and (5) critical infrastructure. This report synthesizes 

the results of that workshop and develops a list of strategic goals for research and education over the next 5-10 years. The full 

list of workshop participants can be found in the appendix. 

Embedded security in connected devices presents challenges that require a broad look at the overall systems design, including 

human and societal dimensions as well as technical.  Particular issues related to embedded security are a subset of the overall 

security of the application areas, which must also balance other design criteria such as cost, power, reliability, usability and 

function.  Recent trends are converging to make the security of embedded systems an increasingly important and difficult 

objective,  requiring new trans-disciplinary approaches to solve problems on a 5-10 year horizon. 

Below is an overview of the major application areas and a brief summary of the research recommendations for each. 

Embedded Security Research Recommendations Across Major Application Areas

MEDICAL AND HEALTH DEVICES
Medical and health devices, both implanted and wearable  are strictly regulated by the FDA for safety and 

effectiveness to balance the benefits to patient health against the risks from using any medical device. 

However, existing regulations for the safety and privacy (i.e., HIPAA) issues related to medical devices do 

not cover information security or cyberphysical attack situations.  Furthermore, fitness and personal health 

monitoring devices present numerous vulnerabilities and are not currently regulated.

Challenges:
•  Long legacy tail makes it challenging to change or update 

system interfaces or add new procedures (such as 

authentication protocols). 

•  Severe power and energy constraints of wearable, mobile, 

and implantable medical devices.

•  Software, when seen as a medical device, intersects and 

sometimes conflicts with the existing regulatory structures 

such as HIPAA.

•  Globalization and distribution of medical devices away from 

the countries of origin.

Research Recommendations:
The application of classic cryptography, security, and control 

theory (which can be used to model and study impact of 

various attacks on cyber-physical systems as well to mitigate 

damage) to the vulnerabilities and attack surfaces could 

yield novel solutions. Stronger authentication protocols for 

devices that leverage unique features related to the physics, 

locality, or possibly distance to/from device. Ongoing efforts 

to create devices and systems with appropriate failback 

solutions and safe-modes can enable innovative applications 

while also limiting the risks.
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DRONES AND TRANSPORTATION
Our traditional modes of transportation, such as cars and airliners, are increasingly computerized, connected, 

and thus vulnerable to cyber-attacks. At the same time, these modes of transportation are more and more 

autonomous, from cars to public transportation to (potentially) flying taxis. Autonomy also enables the 

emergence of new, smaller logistical capabilities such as flying drones for package delivery.

Challenges:
•  These transportation systems directly interact with the 

physical world, in many cases have real-time requirements, 

and have the capability to harm people.

•  Transportation systems have long lifespans on the order 

of decades with multiple patching and testing cycles. Note 

that some (eg. Tesla) are now pushing software updates 

however this is far from widespread.  Software updates 

can also introduce vulnerabilities.

•  Sensors in these systems are easier to spoof than human eyes.

•  How do you share and manage electronic keys and 

consumer data?

Research Recommendations:
Develop a methodology and tools (including formal methods) 

that incorporate security from the conception of the vehicle 

and enable reasoning about multiple layers (control, software, 

hardware) with different assumptions. This methodology 

should also be able to leverage interactions among multiple 

layers or physical properties of existing systems to enhance 

the security of the overall vehicle.

SMART HOMES
Currently, embedded home systems operate technologies from simple light switches that can be turned on with 

a cell phone, to integrated home fire alarms, security alerts, and health monitoring systems (such as sensors 

that detect falls). These home systems operate in conjunction with third parties including smart electric power 

meters from the electricity service provider, or mobile systems that are found on private automobiles, which may 

share controls with the garage door opener. Such embedded technologies are less regulated and more likely to 

be operated by a non-professional.

Challenges:
•  Operation of the system by non-professionals with little 

knowledge of security requires a robust system that does 

not rely on outside intervention for configuration.

•  Current technologies are not always integrated though 

there is a growing emphasis on standardization. For 

instance, the fire alarm and door lock systems may be 

from different vendors and fail to communicate with one 

another. Additionally, the increasing number of home 

devices, managed in different ways and with different user 

interfaces, is more likely to increase confusion among users, 

and hence introduce security flaws that are exploitable.

•  As home embedded systems become more capable they 

create new types of flows of information. These include not 

only the data collected from, say, a security system with 

cameras, but also devices with voice controls that listen at 

all times for keywords that trigger their functions.

•  The richness of the system is also likely to create fresh 

types of side channels such as the ability to use fluctuations 

on the power system to detect, say, the program being 

watched on the home TV.

•  The information collected from individuals in their homes 

has obvious privacy implications and users will expect a 

high level of security to protect their sensitive information.

Research Recommendations:
It is necessary to develop some kind of rely-guarantee 

framework (a kind of concurrent software verification 

technique) in which components can announce their security 

properties along with the assumptions they expect from their 

environment. Answers to the following questions must be 

generated through regulations: Who should patch or update 

devices to assure continued protection? Should the lifetime 

of devices match those of home ownership? Or, should there 

be models of transfer of devices to the new owner?
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INDUSTRY AND SUPPLY-CHAIN
Embedded systems rely heavily on software and firmware, but even more so they rely on the hardware that 

executes the code and makes the system real. Due to the long lifetime of industrial and supply-chain systems, 

some of this hardware is so old that new parts are nearly impossible to come by and replacement parts must 

be purchased from third parties, with varying degrees of success and fidelity. Even when new systems are built, 

they are often beholden to legacy interfaces for the sake of interoperability.

SMART GRID AND CRITICAL INFRASTRUCTURE
Electric meters once passively recorded the accumulated flow of current into a household or business and 

were read monthly. Smart meters now record and report power consumption on a second-by-second (or 

finer) basis in real time, permitting charging based on time of use. More recently, “smart grid” has broadened 

to incorporate grids in which the infrastructure includes a range of technologies that can more generally 

sense and control its own operation. These new abilities can be used to take advantage of distributed 

power generation based on renewable sources (solar panels, wind turbines), to provide earlier detection and 

location of outages, and to control power flow among regions more safely and efficiently. 

Challenges:
•  Old systems and protocols are challenging to secure 

retroactively.

•  Old hardware is similarly challenging to secure, and also 

challenging to acquire securely. Due to their age, they are 

often highly resource constrained, leaving little headroom 

to accommodate updated software or firmware with 

modern cryptographic and defensive technologies.

•  Designing a safe and secure modern Application-Specific 

Integrated Circuit (ASIC) is challenging and expensive, often 

costing up to 100 million dollars1.

Research Recommendations:
Retaining the capability to manufacture new parts is a key 

solution to the threat of counterfeits.  Ideally, a vendor that 

is no longer interested in manufacturing a part — or worse, 

a vendor that goes out of business altogether — should be 

required to yield their design to others who may wish to do 

so. For newer designs, so-called “split ASIC” and multi-chiplet 

techniques can divide the design into separate pieces that 

can be sent to separate fabrication facilities, complicating an 

adversary’s efforts.

Challenges:
•  Traditional centralized power generation is becoming more 

distributed as smaller scale generation with decentralized 

ownership and control (often “behind the meter”) 

becomes more economical. More active management of 

power demand is likely to accompany this transition, but 

unexpected dependencies between infrastructures are 

likely to be revealed, particularly in emergency situations. 

Failures and attacks may propagate in unexpected ways 

and pricing will become more dynamic.

Research Recommendations:
Educating power companies about the effects of their 

buying decisions is crucial, and appropriate application 

of cryptographic technologies can solve some problems 

in this domain. Cryptography can assure the integrity 

of control signals even if they pass through untrusted 

domains, for example. 

1  DARPA, “Circuit Realization at Faster Timescales (CRAFT)” https://www.darpa.mil/program/circuit-realization-at-faster-timescales
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2. Introduction
This report is based on a 2018 Computing Community Consortium (CCC) visioning workshop and describes results from the 

workshop including conclusion and reflections afterward by a subset of the participants.  The report describes the workshop 

objectives, format, and participants, and then report the results of five breakout groups in each of five application areas. These 

results are then  summarized with  common themes and differences discussed, concluding with research recommendations for 

the next 5-10 years.

The Leadership in Embedded Security Workshop was sponsored by the CCC and co-located with the USENIX Security Symposium in 

Baltimore, Maryland on August 13, 2018. Kevin Fu (University of Michigan), Wayne Burleson (University of Massachusetts Amherst), 

and Farinaz Koushanfar (University of California San Diego) organized and chaired the workshop with the help of CCC staff, Khari 

Douglas and Ann Schwartz Drobnis.

Approximately 50 experts in embedded security were invited following their response to a broad and general call for participation. 

Participants were selected based on a 1-page position paper that addressed a grand challenge in embedded security with a 5-10 

year horizon across multiple subdisciplines. Participants came from academia (including foreign academic participants from the 

United Kingdom, Switzerland, Belgium, China and Korea), industry, and government agencies within the United States.

The workshop program consisted of introductions, two keynotes, two panels, and afternoon breakout groups. The first keynote, 

by Sam Fuller, CTO emeritus of Analog Devices, discussed the history of embedded security and emphasized the importance of 

simplifying and minimizing the trusted computing base. The second keynote, by Farinaz Koushanfar of UC San Diego, discussed 

recent work in machine learning and its role in embedded security. Following the keynotes, there were two panel presentations 

with Q&A sessions. The first panel featured international perspectives on research support for academics from four countries 

(the United Kingdom, the Swiss Confederation, the Republic of Korea, and the People’s Republic of China), while the second panel 

offered perspectives from United States government agencies (FDA, DHS, DoD, NSF) on the roles and priorities for embedded 

security research within the U.S.

The afternoon program broke up the workshop participants into five groups to discuss embedded security in the 
following major application areas: 

Each group was given the charge of identifying key trends, challenges, and solutions in their respective areas. At the end of the 

session, each group reported back on their discussions, and their findings are presented in the next section of the report.

Medical/Wearable 
Devices

Autonomous Systems 
(vehicle, drones, robots)

Smart Homes
Industry and 
Supply Chain

Critical Infrastructure
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3. Embedded Security by Major Application Areas
3.1 Medical and Wearable Devices

Medical devices are strictly regulated by the FDA for safety and effectiveness to balance the benefits to patient health against 

the risks that comes from using any medical device. However, existing regulations for safety and privacy issues (i.e., HIPAA) 

related to medical devices do not cover information security or cyber attack situations. The newly proposed FDA Medical Device 

Safety Action Plan2 includes a recognition that the exploitation of device security vulnerabilities could threaten their safety or 

effectiveness, and thus the cybersecurity of devices must be considered and managed. A key challenge going forward is 
balancing the interconnected but distinct issues of safety, cybersecurity, and usability of medical devices. The long 
legacy tail of many devices and clinical systems is a particular challenge for cybersecurity because there are limited options to 

change or update system interfaces, or to add new procedures (such as authentication protocols). This also creates a burden to 

maintain the training and expertise necessary to manage these devices and systems. Another challenge for cybersecurity of 
medical devices is the sometimes severe power and energy constraints of wearable, mobile and implantable medical 
devices.  This is due to a combination of battery size and battery life as well as thermal constraints, especially for implantable 

devices. Recent research has explored various methods of energy harvesting (chemical, mechanical, thermal).

A number of current trends intersect with the particular challenges of ensuring the (cyber)security of medical devices. The 

continuing growth of software as a service in the cloud must consider the implications for software as a medical device, 

which is defined by the International Medical Device Regulators Forum (IMDRF) as “software intended to be used for one or more 

medical purposes that perform these purposes without being part of a hardware medical device.”3 Software as a medical device 
intersects and sometimes conflicts with the existing regulatory structures such as HIPAA. The already high levels of 

variability in patient/user populations (e.g., elderly, children, soldiers) will increase as more medical devices are introduced to 

locations outside of traditional medical environments (e.g., homes, battlefields), increasing not only the complexity of usability 
challenges, but also the threats to security. Furthermore, it is likely that over time more patients will have multiple devices 

that work in parallel but all intersect with embedded infrastructure and systems. A related issue is the increasing development 

and spread of wellness applications and devices that are not regulated by existing regulatory structures (e.g., FDA, HIPAA) like 

certain smartwatches and fitness trackers. 

As the supply chain for components of medical devices connected to embedded systems becomes increasingly globalized the 

number of security challenges also increase. Two additional global trends with implications for medical devices are: (1) medical 

tourism, in which patients have a medical procedure or get a device outside of the United States (U.S.) but must maintain it over 

time in the U.S., and/or patients who receive treatment in the U.S. but live elsewhere; and (2) shipping of (sometimes used) devices 

to other countries that have fewer resources to maintain/update different system capabilities and standards.

Ongoing research and development in a number of key areas is necessary to address these trends and challenges, and to ensure 

the future security of medical devices. Given the relatively recent emergence of embedded and connected medical devices, the 

application of classic cryptography, security, and control theory (which can be used to model and study impact of various attacks 

on cyber-physical systems as well to mitigate damage)  to the vulnerabilities and attack surface could yield novel solutions. 

Another promising direction for development is toward new, stronger authentication protocols for devices that leverage unique 

features related to the physics, locality, or possibly distance to/from device. Finally, continuing ongoing efforts to create devices 

and systems with appropriate failback solutions and safe-modes can enable innovative applications while also limiting the risks.

2  FDA, “Medical Device Safety Action Plan: Protecting Patients, Promoting Public Health”. 2019. 
https://www.fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cdrh/cdrhreports/ucm604500.htm

3  FDA, “Software as a Medical Device (SaMD)” 2018 https://www.fda.gov/MedicalDevices/DigitalHealth/SoftwareasaMedicalDevice/default.htm
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3.2 Transportation: from planes, trains and vehicles, to drones and beyond

Our traditional modes of transportation, such as cars and airliners, are increasingly computerized and connected, and thus 

vulnerable to cyber-attacks. At the same time, these modes of transportation are more and more autonomous. Autonomy 

has enabled the emergence of, smaller logistical capabilities such as flying drones for package delivery. Manufacturers are 

becoming aware of the risks posed by the possibility of cyberattacks and are adopting traditional IT security techniques to 

protect themselves. However, the nature and criticality of their security is distinct from IT security, and therefore require distinct 

solutions. These transportation systems directly interact with the physical world, in many cases have real-time requirements, 

have the capability to harm numerous people beyond the user, and have long lifespans on the order of decades with 

multiple patching and testing cycles.

When assessing the cybersecurity of transportation, it is important to carefully characterize the risk. For example, there are 

many ways to cause an accident and harm the occupants of one car without using cyber techniques. However, it is much more 

difficult to cause hundreds of accidents at the same time using only physical means. Sensors progressively replace human eyes, 

which is concerning from a security point of view as a sensor is easier to spoof. Another recent trend has been the consolidation of 

many components into a smaller number of processors (e.g. in the Tesla model of embedded computation), causing security concerns 

as it creates a single point of failure for the vehicle. Electronic keys are also a concern: how do you manage and share them 

while at the same time preventing thefts and attacks? Finally, vehicles, in particular consumer cars, generate a lot of data, and it is 

currently unclear who owns this data and how to address the privacy of the data if it is owned by the manufacturer.

To address all of these challenges, it is necessary to continue developing a methodology and tools (including formal methods) that 

incorporate security from the conception of the vehicle and transportation system,  and enable reasoning about multiple layers 

(control, software, hardware) with different assumptions. One particularly pressing example might be the need to develop tools 

to verify the security of embedded software for transportation and find security vulnerabilities in an automatic or semi-automatic 

manner. Similarly, there is a trend towards integrating typical IT security solutions (firewalls, intrusion detection systems) into 

automotive domains.  On the one hand, this leads to the detection of typical attacks seen also in the enterprise domain.  On 

the other hand, these techniques need to be adapted to cope with the real-time requirements of transportation 
systems. This methodology should also be able to leverage interactions among multiple layers or physical properties of existing 

systems to enhance the security of the overall vehicle. Such an approach will benefit from multiple security checks and thus, not 

a single point of failure in the system design. It will also lead to the development of new platform architectures. In addition, 
benchmarks and metrics to evaluate security of different kinds of vehicles should be introduced. Although it is recognized that 

security is notoriously hard to measure, metrics can be developed based on restricted threat models and the economics of both 

attack and defense.  Finally, it is necessary to develop security regulations and economic incentives for transportation, in the 

same spirit as existing safety regulations (eg. seat-belts, air-bags, tire-pressure sensors).

3.3 Smart Homes Technologies 

As embedded smart home technologies expand in use and complexity, they will become more and more vulnerable to security 

risks. Currently, embedded home systems operate technologies that range from simple light switches that can be turned on with 

a cell phone, to integrated home fire alarms and security alerts, and interfaces to health monitoring systems such as sensors 

that detect falls. These home systems operate in conjunction with third party devices and applications including smart electric 

power meters from the electricity service provider, and the mobile systems that are found on private automobiles, which may 

share controls with the garage door opener. Such embedded technologies are less regulated and more likely to be operated by 

a non-professional. 
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Four key security risks of home embedded systems have been identified. 

1.   Operation of the system by non-professionals with little knowledge of security requires a robust system that does not rely on 

outside intervention for configuration. 

2.   Current technologies are not always integrated, though there is a growing emphasis on standardization. For instance, the 

fire alarm and door lock systems may be from different vendors and fail to communicate with one another. Additionally, the 

increasing number of home devices, managed in different ways and with different user interfaces, is more likely to increase 

confusion among users, and hence introduce security flaws that are exploitable.

3.   As home embedded systems become more capable they create new types of flows of information. These include not only 

the data collected from, say, a security system with cameras, but also devices with voice controls that listen at all times 

for keywords that trigger their functions. Recent smart speakers and voice controlled devices have allowed users great 

convenience but at the expense of reduced privacy and perhaps security.

4.   Opportunities to use malware and exploits are already emerging. We have seen the use of home embedded systems for denial 

of service (DoS) attacks in the Mirai botnets. It is only a matter of time before more sinister attacks such as ransomware 

appear in this domain. The richness of the system is also likely to create fresh types of side channels such as the ability to 

use fluctuations on the power system to detect, say, the program being watched on the home TV.  These go beyond protecting 

direct access to the data sources which may have access control and/or encryption.

Several trends create, drive, or shape these key challenges. Non-professional users will require increased convenience and ease 

of use from these products. Unlike traditional WIMP (window / icon / mouse / pointer) user interfaces, the next generation of 

embedded home systems will feature voice- and gesture-based command and control. These new user interfaces create new 

risks for the injection of commands into the system - for example sounds made by other devices in the home or external, or 

concealed commands through popular songs on smart speakers (e.g. the Burger King “Ok Google” commercial or inaudible voice 

commands like DolphinAttack)4,5. 

Responding to user needs, one  trend is toward product integration among vendors. This includes high-level scripting languages like 

If This Then That (IFTTT) and the development of hubs like Samsung SmartThings, which is able to support an app store and common 

device programming interfaces. However, these systems may present new vulnerabilities.  Finally, we need to consider the growing 

numbers of people who will participate in embedded home systems. For instance, in the past a homeowner may have entrusted a 

neighbor with the spare house key. Now the homeowner may offer access rights to a monitoring service, that same neighbor, their 

children and so on through smart devices. In particular, cell phone and cloud services take home systems to the general Internet 

rather than just operating locally, thus offering a large attack surface and a  very wide potential attacker community.

One key point is that the security of individual devices does not assure the security of the combination of these devices in all home 

configurations. Ultimately it is necessary to develop some kind of rely-guarantee framework in which components can announce 

their security properties along with the assumptions they expect from their environment. For instance, many devices will expect 

security from physical tampering to be provided by another system like a door lock. Other systems, like the electric power meter

4  Jacob Kastrenakes, “Burger King’s new ad forces Google Home to advertise the Whopper,” The Verge. 2017. 
https://www.theverge.com/2017/4/12/15259400/burger-king-google-home-ad-wikipedia

5  Guoming Zhang et al., DolphinAttack: Inaudible Voice Commands. 2017. https://arxiv.org/pdf/1708.09537.pdf
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attached to the outside of the house, will have some level of physical tamper resistance on their own. Embedded systems for 

homes could also benefit from Privacy Enhancing Technologies (PETs) that collect selected, but not all, data about home devices,  

such as electric use that might lead to ideas for reducing costs or coordination with others to address emergencies. The PETs 

would need to be similarly protected from tampering and illegitimate access.

There are other questions that we anticipate with the lifecycle of home embedded devices. For example, who should patch or 
update devices to assure continued protection? Should the lifetime of devices match those of home ownership? Or, should 

there be a model of transfer of devices to the new owner? Resolving such issues should enhance security and privacy, reduce 

expenses, and offer welcome convenience in what might be a chaotic process of ownership transfer.

3.4 Industrial and Supply Chain

Embedded systems rely heavily on software and firmware, but even more so they rely on the hardware that executes the code 

and makes the system real. Due to the long lifetime of these systems, some of this hardware is so old that new parts are nearly 

impossible to come by and replacement parts, with varying degrees of success and fidelity, must be purchased from third parties. 

Even when new systems are built, they are often beholden to legacy interfaces for the sake of interoperability. 

Old systems and protocols are challenging to secure retroactively. For example, it is common for industrial supervisory 

control and data acquisition (SCADA) systems to use the almost 40 year old ModBus protocol for communications.  Standards of 

that era are often built for safety, not security, and are not easily updated to adapt to modern threats and threat models.

Old hardware is similarly challenging to secure, and also challenging to acquire securely. Due to their age, they are often 

highly resource constrained, leaving little headroom to accommodate updated software or firmware with modern 
cryptographic and defensive technologies. Often the manufacturers no longer offer the parts, forcing users to go to third 

parties to acquire replacements in case of failure. As the U.S. Government Accountability Office (GAO) found, it is challenging to 

acquire genuine parts in this manner6. An adversary selling counterfeit parts for profit poses a safety risk, but an adversary 

selling counterfeit parts for malice may pose a security risk as well.

Replacing the hardware isn’t easy, either. Modern process nodes (e.g. 7nm FinFETs) are only available from a trio of vendors, 

which poses the normal risks of a limited marketplace. In addition, small feature sizes often motivate large, complicated designs 

with billions of transistors. Designing a safe and secure modern ASIC is challenging and expensive, often costing up to 

100  million dollars7.

Retaining the capability to manufacture new parts is a key solution to the threat of counterfeits.  Ideally, a vendor that is no 
longer interested in manufacturing a part  — or worse, a vendor that goes out of business altogether  — should be 
required to yield their design to others who may wish to do so. This “design escrow” concept should permit safe new 

production of otherwise obsolete parts, perhaps on process nodes that remain behind the state of the art. Being behind the 

curve, yet ahead of the original part, provides a “sweet spot” that mitigates the threats of the 7nm troika while still providing 

some benefits of smaller feature sizes vs. the original design.

6  GAO, “DOD Suply Chain: Suspect Counterfeit Electronic Parts Can Be Found on Internet Purchasing Platforms” 2012. https://www.gao.gov/products/GAO-12-375

7  DARPA, “Circuit Realization at Faster Timescales (CRAFT)” https://www.darpa.mil/program/circuit-realization-at-faster-timescales
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For newer designs, a variety of approaches can be employed to mitigate the threat. So-called “split ASIC” and multi-chiplet 

techniques can divide the design into separate pieces that can be sent to separate fabrication facilities, complicating an 

adversary’s efforts. Where performance concerns permit, designs should aggressively employ microcode and firmware to permit 

post-fabrication tuning of the hardware. Designs should also leave sufficient “unused headroom” to accommodate new software 

features, both security and otherwise. Such systems are easier to patch over time, and may even be able to use firmware to 

work around flaws discovered later in the hardware.  Finally, business incentives as well as standards can force suppliers to 

provide upgrade paths.

3.5 Smart Grid and Critical Infrastructure

For many people, the term “smart grid” refers to an electric power infrastructure in which there are “smart meters.” Electric 

meters once passively recorded the accumulated flow of current into a household or business and were read monthly; smart 

meters record and report power consumption on a second-by-second (or finer) basis in real time, permitting billing based on 

time of use. They may also exert some control over power flow. The fine-grained measurement of power consumption raises 

significant privacy issues and has been studied in great detail by Kevin Fu et al.8

The added sensing and control can enable better modeling of demand, and thus improve the efficiency and safety of the overall 

power system and make it easier to incorporate renewables, such as solar panels and wind turbines, which are inherently 

variable. Added sensing and control can also be used to reduce peak power demands and thus reduce the need for expensive and 

inefficient “peaker plants” to accommodate peak demand. Demand smoothing can be encouraged either via pricing, for example, 

so that consumers have an incentive to operate a dishwasher late at night when other demands are low, or enforced via actual 

remote control of “smart” appliances.  

Traditional centralized power generation is becoming more distributed as smaller scale generation with decentralized ownership 

and control, often “behind the meter,” becomes more economical. More active management of power demand is likely to 

accompany this transition, and pricing will become more dynamic. Unexpected dependencies between infrastructures are likely 

to be revealed, particularly in emergency situations, and failures and attacks may propagate in unexpected ways. Bitcoin miners 

seeking the cheapest power have already imposed significant demands in unexpected locations, triggering pricing reviews. 

Adoption and deployment of smart grid technology may also vary globally in surprising ways. Countries with established and 

redundant infrastructures will need to accommodate substantial legacy systems, while less developed nations may be able to 

adopt smart grid technologies more quickly. 

Grid systems traditionally were segregated from communication systems. Telephone networks were self-powered so they would 

continue to operate when the power grid went down. Consumers were strictly segregated from the generation and distribution 

systems. Operated as utilities, these systems invested in high reliability components with long lifetimes, much as the telephone 

systems of the AT&T telephone monopoly days did. When the telephone monopoly was ended, new companies began producing 

components to be integrated into the existing telephone networks, and switching system internal interfaces suddenly became 

much more widely accessible. Customers buying rather than leasing phones looked for low initial cost, features, and style more 

than reliability and security. These preferences continue to influence many aspects of the evolution of the telephone ecosystem. 

However, in addition to large utilities, the US power grid also features rural cooperatives, with different tradeoffs of budgets 

and engineering. Indeed, these coops are where one might first see use of Internet and commodity tablet computers and 

smartphones to control the grid.

8  Andrés Molina-Markham et al,, Private memoirs of a smart meter. 2010. https://dl.acm.org/citation.cfm?doid=1878431.1878446
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Consumers will gain abilities to generate power and control consumption; “smart” components with shorter life expectancy 

will be incorporated into networks with aging but reliable “dumb” components. Sensing and signaling system interfaces will be 

opened up. A major challenge will be to maintain power system dependability and security as these changes percolate through 

these systems. As the set of users becomes wider, authentication and authorization, particularly in emergency situations, will 

be critical. Cyber attacks will become more feasible, particularly if low cost, unpatchable, or only manually patchable systems 

permeate the grid.   

Indeed, this might be the crucial security issue with the smart grid: the vastly increased attack surface. Educating power 

companies about the effects of their buying decisions is crucial. A way that consumers (including power companies) may make 

informed decisions about the likely dependability and security effects of their purchases is very much needed. One important 

aspect of realizing this goal is to ensure that the costs of a security or dependability failure are borne by the companies in a 

position to address that failure. In this case, the costs of failures will be internalized and developers will have the appropriate 

incentives to bring dependable and secure products to market. Past and present policies for software production and licensing 

are not good models in this regard.  Anderson raised this issue as early as 2001, however it is still largely true9. 

Appropriate application of cryptographic technologies can solve some problems in this domain. Cryptography can assure the 

integrity of control signals even if they pass through untrusted domains, for example. As always, careful attention will need to be 

focused on the key management and protocols involved. Other critical issues include balancing high security with low latency on 

critical (and often slow legacy) communication paths, and balancing the security shelf-life of key lengths and algorithms with the 

decades-long deployment lifetimes of grid equipment. Industry standardization and rigorous analysis, testing, and certification 

of components should be encouraged.

4. Common and Distinguishing Themes and Solutions 
The workshop breakout presentations revealed that there were numerous common themes in terms of trends, challenges, 

and solutions that impacted most or all of the five applications areas. However, there were also some important distinctions 

between the areas. For example, increased connectivity leads to increased attack surfaces in all five areas, however network-

based defenses vary considerably depending on the threat models and impacts on performance and utility. As another example, 

machine learning algorithms and the move towards autonomous systems are particularly significant in all areas, especially 

for detecting intrusion and anomalous behavior, however specific vulnerabilities vary depending on the area. Furthermore, the 

requirements (performance, cost, reliability, life-time, etc.) for each area are significantly different, thus leading to different 

challenges, and warranting different approaches to security and privacy.  Figure 1 shows the overlap of common trends and 

challenges by application area as well as notable areas of distinction, while Figure 2 shows areas of overlapping, potential novel 

solutions for these challenges.

9  For more on this topic see chapters 22 and 25 in Ross Anderson’s Security Engineering: A Guide to Building Dependable Distributed Systems.
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Figure 1. Overlap of Common Themes and Challenges in Embedded Security by Application Area

Figure 2. Overlap of Potential Novel Solutions to the Embedded Security Challenges of Each Application Area
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4.1 Common Themes

Several common IT trends, both technological and societal, cut across all areas. For example, embedded systems are leveraging 

the ever advancing capabilities of semiconductor technology, incorporating numerous processors, memories, radios and sensors in 

low-cost and low-power sub-systems. In addition, there is a move in all industries towards the integration of multiple and diverse 

functionalities into single devices to reduce the complexity of systems and their associated costs. While this is not widespread, it is 

driven by start-ups (rather than well-established players), which typically aim to disrupt entire ecosystems. Thus, in the next five to 

ten years we can expect to have heterogeneity in deployed solutions, with conceptually different designs. At the same time, these 

different solutions and design paradigms will need to co-exist and guarantee common sets of security and privacy assurances, 

individually targeted to each industry. Embedded systems also reflect typical globalization trends, with design, manufacturing, 

and deployment occurring across geographic and political boundaries. Systems are increasingly designed with large numbers of 

outsourced components, both hardware and software. These lead to concerns regarding the security of the components and how 

they will influence the security of the systems, many critical infrastructure, in which they will be integrated.

Threat models are also changing with new capabilities and business models for cyber criminals. Threat actors may range from 

nation states to petty criminals, and even include the users themselves (e.g. un-locking features or using unauthorized code).  

Users of embedded systems now encompass larger and more diverse portions of the population, with wide economic, education 

and cultural differences. Autonomy is a general trend in most embedded systems, as users delegate more and more functionality 

to embedded processors often assisted by AI and machine learning techniques. It is expected that this trend towards depending 

more on AI algorithms will only intensify in the future. This in turn will lead to AI algorithms being increasingly responsible for 

(safety) decisions that will impact the well-being of humans and that were traditionally taken by humans. There is a need to 

define what the “correct” decisions are in many life-or-death scenarios and, more generally, to define algorithms that can learn 

such decision making protocols, which until now where exclusively the responsibility of humans. Balancing tradeoffs between 

security and safety, cost, usability, and rapid design development are also common across the five areas.

The role of the life-cycle of systems is another recurring theme in embedded security. This ranges from design and manufacturing 

to field updates, key management, cryptographic agility, data retention, changes in ownership, and changes in threat models. 

System lifetime is a critical aspect shared by all five of the major application areas, ranging from the design and manufacture 

of systems, through their deployment, numerous upgrades, and finally decommissioning and disposal of systems and their 

associated data. Life-cycle management becomes even more relevant when we observe that these widely deployed embedded 

systems will collect and have access to highly confidential (business) data, privacy sensitive data, or key material that can grant 

access to critical infrastructure or safety critical systems.

Most embedded systems need well designed fail-safe mechanisms and resiliency in case of attack. For medical and automotive 

systems, an attack can quickly lead to fatalities, so manual overrides are necessary. However these need to be carefully designed 

to avoid new vulnerabilities. Critical infrastructure, by its nature, requires strong resiliency plans, although the time-frame for 

response is longer than that for medical systems. The sheer scale of critical infrastructure makes this resiliency a difficult 

challenge in system design, however solutions can be shared with those for other catastrophic scenarios (weather, earthquake, 

terrorism, etc.).
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4.2 Distinguishing Themes

Several important distinctions were noted between the five application areas. A primary point of distinction is in the ownership 

of the system and the overall economic situation. For example, a smart home owner wants the ability to control the security and 

privacy of their personal life, while an autonomous vehicle owner may have to comply with more regulations due to the shared 

nature of roadways. The owner of a power distribution network has an ongoing business relationship with their customers, as 

well as significant regulations for both safety and fairness.

The owner of the data that the system generates also varies considerably for a medical device compared to critical infrastructure. 

The device manufacturer may claim ownership of some data as a way to improve the device performance. Modern data-driven 

businesses will want as much data as possible to optimize their systems for users and profit, as well as to protect against 

various threats. Ultimately, users should have rights to the data generated from their bodies and their behavior. Laws such as 

the recent European Union General Data Protection Regulation (GDPR), and market incentives can be used to help ensure these 

rights. In contrast, the data from critical infrastructure will be collected by local, state, and federal governments, as well as 

manufacturers and installers in order to monitor usage and design improvements to systems. Data from critical infrastructure 

will need to be protected from misuse but must be made available to those stakeholders who manage them. 

The role of regulations and incentives differs considerably across the five areas as well. Even within the area of medical and 

wearable devices, there is a huge range between FDA-regulated devices and the almost unregulated world of personal health apps 

on mobile phones. The data on both types of devices can be highly personal and thus a significant privacy risk. The FDA, FTC or 

some other government agency should consider developing regulations for these new consumer devices and associated software.

Critical infrastructure such as power, transportation, or communications typically involves a relationship between a large provider 

and numerous clients. The provider has substantial resources to afford complex security solutions, however the economics of 

a large user base may make it difficult to protect client security and data privacy. Regulations or market incentives may be 

necessary to reconcile this tension.

Incentives can be more effective than regulations in some embedded security solutions.  As security and privacy become more 

visible and valuable to users, hopefully business incentives can play more of a role in setting security policy.

Threat models also vary between application areas. Industry supply chains are threatened by counterfeits and recycled/repurposed 

parts that result in lost revenue and damage to brand reputation. Critical infrastructure threats include users who are not paying 

for services delivered and third-party analytics firms who misuse client data. The more obvious threats of terrorism and nation-

state warfare loom large in critical infrastructure where an attack can have widespread impact and denial of service. In these 

cases, resilience and recovery are probably more realistic goals given the difficulty of preventing attacks.



15

Finally, it can be useful to recognize that embedded security problems can be classified across several axes. These 
include the following: 

Products

Regulations

Personal

Producer

Community

Consumer

Services

Incentives

  AXIS 1

Area of Impact: Consumer vs. Producer/Vendor

Point of Tension: The security of the consumer in 

terms of protecting their data versus the concerns of the 

manufacturers of security solutions and their concerns 

to protect themselves in terms of liability, and also their 

intellectual property and security of their own systems. For 

instance, what should individuals be required to share about 

the status of their smart homes? This data could reveal lots 

of personal information, but could also be necessary for the 

provider to find and fix vulnerabilities. 

  AXIS 2

Area of Impact: Regulations vs Incentives

Point of Tension: Both can be useful in terms of setting and 

enforcing security policies. As threat models change, they need 

to be revisited and adapted – some will require more of the 

carrot (incentives) and some more of the stick (regulations).

  AXIS 1

Area of Impact: Personal vs. Community

Point of Tension: The security and rights of the individual 

or client need to be balanced with the overall security of the 

system. For example, an individual could refuse to update 

their operating system, but this may introduce vulnerabilities 

into the system if the lack of updates also prevents them 

from receiving the same quality of security upgrades. 

  AXIS 2

Area of Impact: Products vs. Services

Point of Tension: This refers to the embedded systems as 

well as their security.  Lately the economy has seen a shift 

from products (mostly static systems, e.g. a car) to services 

(ongoing, non-tangible benefits available for purchase, e.g. 

updating navigation system in a car), which both complicates 

attacks as well as allowing updates and threat-sharing.
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5. Directions and Growth areas in Embedded Security Research and Education
Potential solutions to the embedded security challenges discussed above can be divided across three action areas  as follows.

5.1 Cryptographic Schemes and New Security Methods

These include new cryptographic techniques among which three should be highlighted. First, quantum computers are expected 

to become practical in the next 10-20 years and this will require the design and validation of new so-called post-quantum 

cryptographic schemes. Such schemes are based on mathematical problems for which no efficient quantum algorithms are 

known to exist. As such, they are expected to remain secure for appropriate parameter sizes even if quantum computers become 

practical in the medium term. Widely varying new algorithms are based on lattices, multi-variate methods, hashes, codes and 

elliptic curve isogeny. NIST is already developing a first standard for Post-Quantum Cryptography10 with drafts expected in 2022-

2024, but this will be an ongoing effort since most of these schemes are quite young and will presumably evolve. In January 

2019, the CCC held a workshop on Post Quantum Cryptography – see that workshop report for further information on this topic. 

Second, the advent and wide deployment of machine learning algorithms coupled with the broad collection of data and ever 

increasing security concerns and vulnerabilities have prompted renewed interest in techniques that allow processing of data 

in the encrypted domain (i.e., without having to decrypt the data). Two different lines of work should be highlighted here. On the 

one hand, there has been intense research since 2009 on Fully Homomorphic Encryption (FHE) Schemes; these are cryptographic 

schemes with homomorphic properties. In other words, computation can be performed directly on encrypted data without 

decrypting. Here the focus and current challenges are on making such schemes practical. Practicality first entails the ability to 

perform the operations with acceptable overhead and reduce the size of key material, which tend to be significantly larger than 

standard (not post-quantum secure) schemes such as RSA or elliptic curves.

While FHE is applicable to protect remote computation on sensitive data, multi-party computation (MPC) is a more efficient 

scheme for computation in a group of mutual distrusting parties. These schemes are computationally less costly per device but 

they require the exchange of significant amounts of encrypted data among the parties involved in the computation. Recently the 

most promising solutions are based on a combination of the previously mentioned techniques, using FHE and MPC to perform 

operations that are best suited for each. It is also important to point out that the basic ideas underlying MPC have found 

applicability in other domains such as secure supply chain and production of chips and the design of cryptographic schemes at 

the hardware level that offer security against physical (tampering) adversaries.

In addition to these cryptographic techniques, the security of existing and future solutions can only be assured by a combination 

of formal methods aimed at providing strong security guarantees about deployed systems, and the detailed consideration of 

human factors in their design. Particularly important are formal methods to verify software and hardware designs as well as 

techniques aimed at semi-autonomously finding bugs in software and hardware designs, in a wide range of user scenarios.  

Given the expected increase in our societal dependence on autonomous systems the relevance of such techniques will only 

increase. Different types of users and their preferences should be studied when designing secure systems and during research, 

leveraging a wide body of human factors research in related areas.

Another area of interest is the design and implementation of cryptographic schemes leading to small footprints and acceptable 

performance in highly constrained devices. The increased levels of connectivity and data gathering will be enabled by the 

expected deployment of sensor and actuator nodes with very limited computational capabilities. Thus, designing for such systems 

continues to be an interesting challenge.

10  NIST, “Post-Quantum Cryptography” 2020. https://csrc.nist.gov/projects/post-quantum-cryptography
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Finally, the research community has started to explore the use of economic models of security and economic incentives for 

private entititues to improve security outcomes (e.g. taking down fradulent web-sites), often working in partnership with other 

stakeholders such as law enforcement.  An entire sub-discipline of Information Security Economics11 has emerged in the last 

decade to explore these cross-disciplinary issues, 

5.2 Practical Security Solutions  

Security solutions evolve continuously and so existing solutions to new challenges are being deployed across industries. Examples 

include the design of secure software upgrades for cyber physical systems, the automotive domain being a prime example of 

this type of solution and associated challenges. Similarly, there has been an increase in the number of tools offered that help 

developers write secure software by integrating them into their development tool chains. These tools are made easy to use for 

all developers, not only security experts. In addition, there is a trend towards the development of tools that will detect and patch 

vulnerabilities automatically without, or with very little, human intervention.  

5.3 Education Initiatives  

Finally, we emphasize the need for educating the workforce in the basics of secure design and how to apply standard guidelines 

to the building of secure products. Similarly, it is necessary to educate developers on the use of privacy by design techniques 

to guarantee that both security and privacy safety measures are built into products from their onset and not simply as an 

afterthought. Building without privacy for design is destined for failure, as has been shown so often in the past (recently with 

Facebook, dating app Coffee Meets Bagel, and the city of Tallahassee).12

Users of products would also benefit from general security and privacy education campaigns aimed at making them aware of 

simple secure configuration options for home devices, typical scams performed via email or social media, the perils of sharing 

too much information, and practicing simple digital hygiene, all of which can go a long way towards protecting their personal 

information. Such approaches are already being actively deployed in companies with the aim to minimize security incidents. It is 

clear that the general population would benefit from such an approach as well.

11  The Workshop on the Economics of Information Security https://econinfosec.org/

12  Steve Turner, “2019 Data Breaches - The Biggest Breaches of the Year,” Identity Force. 2019. https://www.identityforce.com/blog/2019-data-breaches
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6. Appendix 
6.1 Summary of Recommendations:

Below is a list of high-level areas for potential research, education, and policies that could eliminate or reduce some of the risks 

discussed in this workshop report. These concepts are indexed by topic area. This report aims to capture the discussions that 

occurred at the August 2018 workshop—because of this certain topics are not discussed in the report, but are still listed below 

as areas to consider for improving embedded security.

Cross-Application Areas Research Areas:
◗  Practical
 •  Design methodologies – page 1, 9, 12, 17-18, 22-23

 •  Forensics

 •  Secure upgrades – page 4, 11, 22-23

 •  User interfaces – page 1, 4, 7, 10, 11, 14

◗  Scientific 
 •  Economics models – page 9, 19

 •  Formal methods – page 2, 9, 23 

 •  Lightweight and robust implementations – page 3, 9 

 •  New cryptography (PQC, FHE, MPC) – page 1, 2, 8, 14, 22

 •  User-studies – page 23

Domain-specific Research Areas:
◗  Autonomous Systems – page 2, 8, 15, 18, 23 
 •  Complex composite systems and interoperability with legacy

 •  Threat models – page 8 

 •  User vs. manufacturer incentives – page 18

◗  Industrial and Supply-chains – page 4, 11-12, 15,  19
 •  Economics of countermeasures vs. threats of counterfeiting – page 4, 12, 19

◗  Medical – page 1, 6-8, 9, 15, 18  
 •  Human safety and privacy foundations – page 6, 8, 9, 18

◗  Smart Grid and Critical Infrastructure – page 4, 12-14, 15-16, 16-19 
 •  Data-driven studies of large-scale system effects with user inputs

◗  Smart Homes – page 3, 9-11, 15, 21 
 •  Life-cycle issues – page 11

 •  User-driven decisions about risk tolerance – page 21
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Education Areas:
◗  Enforcement – page 23
 •  Analysis – page 14 

 •  Containment

 •  Detection – page 9 

 •  Forensics

◗  Policy makers
 •  Adaptive policies (based on results)

 •  Regulations and incentives – page 2-3,  6, 9, 18-22

◗  Users – page 10, 11, 14, 17, 18, 19, 24 
 •  Cost – page 19

 •  Digital hygiene – page 24

 •  Security and privacy awareness – page 24 

 •  Tradeoffs – page 19

◗   Workforce – page 24 
 •  Beyond Computer Science and IT – anyone who will design, analyze, regulate or enforce security and privacy in embedded systems

 •  Pipeline

Common solutions:  
•  Application of classic control theory to control those systems – page 15

•  Automated tools (eg software analysis) – page 2, 9, 24  

•  Crypto agility – page 22-23

•  Design escrow – page 12

•  Economic/business incentives – page 9, 13, 14, 18-23

•  Emerging cryptography  (MPC, FHE, PQC,...) – page 22-23

•  Key management – page 14, 17, 23

•  Leveraging the physics, locality, and distance for authentication – page 2, 8 

•  Lightweight HW security primitives

•  Open source security libraries, software, and hardware

•  Secure updates, mixed-lifetime components, field-replaceable unit – page 3, 11, 13-14, 15-20

•  Resiliency, attack recovery, containment – page 18-19 

•  Split design (not just semiconductors) – page 4, 12

•  User education – page 17, 24 

•  Workforce education – page 24
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