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While past information technology (IT) advances have transformed society, future advances hold even  

greater promise. For example, we have only just begun to reap the changes from artificial intelligence  
(AI), especially machine learning (ML). Underlying IT’s impact are the dramatic improvements in  

computer hardware, which deliver performance that unlock new capabilities. For example, recent  
successes in AI/ML required the synergy of improved algorithms and hardware architectures (e.g.,  

general-purpose graphics processing units). However, unlike in the 20th Century and early 2000s,  

tomorrow’s performance aspirations must be achieved without continued semiconductor scaling  
formerly provided by Moore’s Law and Dennard Scaling. How will one deliver the next 100x  

improvement in capability at similar or less cost to enable great value? Can we make the next AI leap  
without 100x better hardware?  

This whitepaper argues for a  
multipronged effort to develop new  

computing approaches beyond  
Moore’s Law to advance the  

foundation that computing  
provides to US industry, education,  

medicine, science, and government.  

This impact extends far beyond the  
IT industry itself, as IT is now  

central for providing value across  
society, for example in  

semi-autonomous vehicles,  

tele-education, health wearables,  
viral analysis, and efficient  

administration. Herein we draw  
upon considerable visioning work by CRA’s Computing Community Consortium (CCC) and the IEEE  

Rebooting Computing Initiative (IEEE RCI), enabled by thought leader input from industry, academia, and  

the US government.  



                 

             

             

                  

               

           

              

           

                    

              

             

                 

              

             

               

             

                

               

               

               

                

                

                 

                

    

                

               

        

               

                

             

              

                

             

                   

            

               

                  

                   

In the 20th Century, Moore’s Law’s rapid doubling of transistors per chip (for similar cost) facilitated an 
era, now ending, where software and applications could be developed independently from computer 

hardware, because hardware maintained a fixed interface to software (instruction set architecture). The 
good news is that there are several ways to restart the meteoric rise of computer performance. The bad 

news is that the more revolutionary of these approaches will require not only significant hardware 

investment but also significant software rewriting and software-hardware “co-design”. This disruption 
will entail significant technological risk that can exceed the portfolios of individual companies and 

industries. Thus, pre-competitive government investment is critical to enable future success. 

We structure the rest of this whitepaper using the figure above. On the left of this figure, we see layers 
of computing technology (the “computing stack), starting with a computer program’s algorithm and its 

programming language choice and extending down through the architecture and ultimately to the 
devices that comprise the computer’s hardware. On the right of the figure, we show four levels of 

approach, numbered from 1 to 4, to “rebooting computing.” Each level involves progressively greater 

disruption of today’s technologies while also promising progressively greater opportunities. Some of the 
ideas that we consider here are relatively new, while others have previously been considered, but 

deserve revisiting now that Moore’s law no longer dominates over other approaches. 

Level 1: “More Moore:” This approach aims to extend Moore’s law past the year 2025 somehow. 
Although the least disruptive to today’s computing stack, the challenges inherent in this approach are 

great and potentially insurmountable. The basis for computing since the early 1980s is the CMOS 
(complementary metal oxide semiconductor) switch that we now scale near its 2D limits. One promising 

approach is to go 3D, although 3D chips introduce many challenges in manufacturing, cooling, and likely 

will require Level 2-3 changes to use well. Longer-term work should also examine new, more energy 
efficient and faster kinds of switch, although any such switch will ultimately also be limited by physical 

laws. These advances will be difficult to achieve for US society without unencumbered access to chip 

manufacturing as a foundation. 

Level 2: Hidden changes: There is potential for using novel ways to construct computer internals while 

only disrupting part of the computing stack, thus mitigating the impact on software and applications. 
These techniques include adiabatic/reversible and cryogenic/superconducting computing. Adiabatic 

computing exploits the phenomenon that power in a computer circuit is consumed only when the 

number of inputs is reduced to a smaller number of outputs. Recycling unused inputs can save 
significant power, but requires different devices than CMOS. Superconducting computing aims to exploit 

different devices than the semiconductor industry produces today which when connected in new ways 
and cooled to very low temperatures (e.g., -452℉ where electrons can travel with zero resistance) can 

run at much higher frequencies than today’s computers. If today’s example superconducting systems 

can be moved from the lab into practice, there is a potential for new computers that still run today’s 

software base, as well as providing a technological interface to quantum computers. 

Level 3: Architectural changes: A third approach allows computer hardware changes that alter how the 

computer is programmed. First, we can move the program to the data, instead of the other way around. 
Today, data is moved in and out of the CPU for computation, but with massive data, it makes more 



                 

                 

               

              

              

            

             

             

           

              

               

             

              

                

                 

                

               

           

               

              

                

                   

              

                 

          

              

          

                

             

            

                   

             

               

               

                   
            

              
            

sense to move the computation to the data, as when machine learning accesses sparse data. Second, we 
can leverage approximate and stochastic computing. Computers today often calculate results to a higher 

than required accuracy and precision. Removing this waste can both save significant power and improve 
computing speed, as recently demonstrated by using 16-bit floating point numbers and few-bit integers 

for ML training and inference, respectively. Third, as progress in general-purpose processors slows, we 

can build computer components called accelerators that provide high efficiency for specific 
computational phases or problems, such as ML training and inference, sensory processing, and 

communication mediation. Fourth, we can design systems that choreograph the use of many 
heterogeneous hardware resources (e.g., accelerators) to mitigate multiple bottlenecks that choke 

effective end-to-end solutions, such as in semi-autonomous vehicle processing where ML is but one 
phase. None of these approaches will speed up today’s software. They will all require significant 

investment in both hardware and new software, often co-designed together. New algorithms that 

exploit architectural innovations will provide an even greater boost in performance. This approach has 

the potential for a new era of expanded computing performance beyond that provided by Level 2. 

Level 4: Non-von Neumann: The current way we compute was first articulated by John von Neumann in 

1948. But there are radically different ways to compute that may be significantly better. First, quantum 
computing uses properties of quantum mechanics to solve problems far more quickly than the von 

Neumann approach. Quantum computing has appropriately garnered attention, but its long-term 

success also requires symbiotic advances in many of the other areas we have discussed. Second, 
neuromorphic computers can leverage what is known about how the human neocortex operates. A 

neuromorphic computer is well suited to, for example, recognize and classify patterns in text, audio or 
images. It is no surprise when you think of it: the human brain is remarkably efficient at such tasks. 

Third, physical computing leverages the physics of natural processes to perform complex computational 
tasks. For example, an optical lens easily extracts spectral information from a light source that would be 

computationally expensive on traditional computers. Quantum, neuromorphic and physical computing 

each require significant investment in all levels of the computing stack. However, the resulting 

performance benefits can multiply the effects of Level 1-3 approaches. 

IT can enable continued success stories across US society, but, with the slowing of Moore’s Law, 

computing’s foundations are facing technological risk that can exceed the portfolios of individual 
companies and industries. Pre-competitive government investment is critical to enhance this foundation 

of future success. This fact is clearly recognized by China and the EU, as evidenced by their increased and 

targeted efforts. Government investment can yield improvements that multiply across the four levels 
described herein to enhance US leadership across industry and society. Leading in IT, including AI 

support, will likely have the same lasting effects as did the Internet and personal computing. 

This white paper is part of a series of papers compiled every four years by the CCC Council and 
members of the computing research community to inform policymakers, community members and 
the public on important research opportunities in areas of national priority. The topics chosen 
represent areas of pressing national need spanning various subdisciplines of the computing 



              
 

research field. The white papers attempt to portray a comprehensive picture of the computing 
research field detailing potential research directions, challenges and recommendations. 

This material is based upon work supported by the National Science Foundation under Grant  
No. 1734706. Any opinions, findings, and conclusions or recommendations expressed in this  
material are those of the authors and do not necessarily reflect the views of the National Science  
Foundation.  
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