Spin Wave Reversible Logic

Alexander Khitun

Electrical and Computer Engineering Department, University of California - Riverside, CA, USA, 92521

Tel: 951.827.5816 Fax: 951.827.2425 Email: akhitun@engr.ucr.edu

This was supported by the Spins and Heat in Nanoscale Electronic Systems (SHINES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES) under Award # SC0012670.

Physics & Engineering Issues in Adiabatic/Reversible Classical Computing workshop,
Tuesday, October 6th

Why spin waves?

Two men with laser pointers:
EM goes through the intersection

Two men with spin waves:
SW is reflected back in case of destructive interference

constructive
destructive
Spin Wave Interference in a Cross Junction

\[H = -J \sum_{j} S_j S_{j+\delta} - 2\mu H_0 \sum_{j} S_{jz} \]

\[\hbar \frac{d\vec{S}_j}{dt} = \vec{\mu} \times \vec{B}_j \]

Case 1: Two spin wave packets are excited in-phase: propagation without reflection

Case 2: Two spin wave packets are excited out-of-phase: 100% reflection
Numerical Modeling

Two waves are in phase: 100% Transmission

Two waves are out of phase: 100% Refraction

Billiard-ball model

There are two major, closely related, types of reversibility that are of particular interest for this purpose: physical reversibility and logical reversibility. There is no energy required for reversible computing.

Fredkin and Toffoli Gate billiard ball model of an AND gate. When a single billiard ball arrives at the gate through input 0-in or 1-in, it passes through the device unobstructed and exits via 0-out or 1-out. However, if a 0-in billiard ball arrives simultaneously as a 1-in billiard ball, they collide with each other in the upper-left-hand corner of the device and redirect each other to collide again in the lower-right-hand corner of the device. One ball then exits via 1-out and the other ball exits via the lower AND-output. Thus, the presence of a ball being emitted from the AND-output is logically consistent with the output of an AND gate that takes the presence of a ball at 0-in and 1-in as inputs.
Building Reversible Logic Gates

Cross-junction

Spin waveguide

Phase shifter

<table>
<thead>
<tr>
<th>Input A B</th>
<th>Output A B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>1 0</td>
</tr>
<tr>
<td>0 1</td>
<td>0 1</td>
</tr>
<tr>
<td>1 0</td>
<td>1 0</td>
</tr>
<tr>
<td>1 1</td>
<td>0 1</td>
</tr>
</tbody>
</table>
It is possible to build logic gates with unidirectional information flow by combining cross junctions with waveguides and phase shifters.

Case #1: A=B waves come through each junction without reflection

Case #2: A≠B there are multiple reflections before waves will come through
Experimental Setup

Test structure: four-terminal cross junction made of yttrium iron garnet $Y_3Fe_2(FeO_4)_3$. The length of the each waveguide is 3.65 mm; the width is 650 μm; the YIG film thickness is 3.8 μm; saturation magnetization of $4\pi M_0 \approx 1750 Oe$.

There are three micro-antennas fabricated at the edges of the cross arms. Spin waves are generated by RF current flowing through the antennas at ports 1 and 2. The output inductive voltage is detected by the micro-antenna at ports 3 and 4.
Searching for Symmetrical Output

Spin wave transport within the cross junction is efficiently controlled by the direction of the bias magnetic field. Symmetric output is expected at 45°.

On/Off ratio > 45 dB at Room Temperature
Phase noise: in YIG ~ -130 dBc/Hz
Numerical Estimates

\[E_{out} = E_{in} \times \exp[-\alpha L] \times \beta^N \]

\(\alpha \) – spin wave attenuation per propagation length (e.g. \(\sim 25\text{dB per 3mm in YIG at RT} \))

\(\beta < 1 \) – spin wave losses per cross junctions

\(L \) – the length of the circuit

\(N \) – number of cross junctions per circuit

\(E_{out} \geq 100\ kT \)

Number of operations = \(N / \rho \),

\(\rho \) – number of junctions per logic circuit (e.g. 8 junctions for the described gate)

Time delay = \(L / v_g \), \(v_g \) – group velocity (e.g. \(3 \times 10^4 \text{ m/s for magneto-static spin waves in YIG} \))
Key parameters:

\[\alpha = 25 \text{dB per 3mm} \ (YIG \ at \ RT) \]

\[\beta = \frac{P_0 - P_{\pi}}{P_0 + P_{\pi}} \]
Summary

- Spin wave interference for signal re-direction
- Reversible logic gates based on cross-junctions
- Numerical modeling on nanometer scale cross junction: infinite On/Off
- Experimental data on micrometer scale YIG cross junction: On/Off > 45 dB at Room Temperature
- Numerical estimates: less than 1kT per operation is possible in scaled spin wave reversible logic gates

Research Plans

- Demonstrate a prototype consuming less than kT per operation at RT

- Design more functional phase-based logic gates

- Explore the thermodynamic limits of classical phase-based computing
THANK YOU FOR YOUR ATTENTION!