

Path to Widespread Adoption of Reversible Classical/Adiabatic Logic Technology by Industry

Dr. Andrew C Pineda Spacecraft Component Technology Division Space Vehicles Directorate US Air Force Research Laboratory

Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2020-0147.

Outline

- Goal
 - Widespread adoption of reversible logic
 - Meeting AF Needs
- Timeline of Air Force Efforts
 - Energy Consequences of Information Workshop
 - STTR Phase 1
 - STTR Phase 2
- Growing Interest/Demonstrating Benefits
 - Other demonstrations comparing conventional and adiabatic
 - What is the best way to compare implementations?
- Requirements
 - Improving tools
 - Killer applications

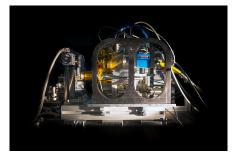
USAF/USSF Interest in Reversible/Adiabatic Approaches

- Meeting Air Force/Space Force Needs
 - Processing requirements of future space systems growing rapidly need to get <u>better</u> data products to the warfighter <u>faster</u>, manage <u>larger</u> numbers of satellites from the theater
 - Autonomous operation simplified mission planning, response to environmental threats
 - Image processing larger formats and higher frame rates driving processors & memory
 - Resource constraints drive size, weight and power demands on a satellite
 - Available energy (Energy from solar panels ~ area), Heat dissipation ~ area * T⁴
 - Limits power use by microprocessors \rightarrow limits capability
 - Additional Constraints Imposed by Space Environment
 - Mission Reliability 2-15 year lifetime on orbit? Depends on orbit
 - Radiation Tolerance Depends on orbit
 - Impact of reversible computing unknown, but not expected to differ from traditional approaches
 - Cost
 - Chip design & fabrication costs for large scale processors have grown rapidly over time government cannot go it alone
 - Need to leverage both government and industry interest and investment

Our challenge – attract sufficient interest from all parties to garner needed investments and technology developments

History of AF Efforts

- Energy Consequences Of Information Workshop February 2017, Santa Fe, NM
 - AFRL, DoE, AFOSR
 - Cast a broad net looking at approaches to energy efficient computing in multiple domains, satellites to supercomputers
 - Inspiration for new research areas in our program In-house and SBIR/STTR calls
- STTR Topic AF18B- T013 to develop and characterize a test chip implementing adiabatic/reversible logic side-by side with conventional logic implementation
 - Compare performance while controlling for other factors such as process technology, etc.
- Two teams selected for Phase 1 Chip Design Study (December 2018-September 2019)
 - Indiana Integrated Circuits/Notre Dame focused on 1 logic approach and proposed reduced instruction set microprocessor @ 500 MHz that could be operated in both reversible and conventional modes
 - Signal Solutions/University of Kentucky proposed a study of multiple adiabatic logic approaches using simpler circuits
 - Both studies provided valuable insights would have liked to fund both for phase 2
- IIC/ND selected for Phase 2 fabricate and test their design
 - Delayed start due to changes in the AF SBIR/STTR program, awarded in 2nd quarter of 2020
 - Hoping to have silicon around 2nd quarter of 2021
 - See IIC/ND team presentation for details


Questions on Growing Interest/Demonstrating Benefit

- IIC/ND program is attracting both government and commercial interest, so what should our strategy be going forward? Some questions to consider:
 - Do we have the right approach to garner long term interest?
 - May not convince customers, competing against 50+ years of design strategy
 - Our comparison, while necessary, is somewhat constrained
 - In the end need to demonstrate that this leads to a better solution
 - Need to compare an optimal conventional solution against an optimal adiabatic solution
 - We expect the current apples-to-apples comparison to show a 1-2 order of magnitude energy benefit
 - If the approach scales to more complex designs, this may be enough

AFRL

Questions on Growing Interest/Demonstrating Benefit

- Do we have the right application?
 - Memory logic much of the operating cost of HPC systems is energy dissipated by RAM suggests a place in the memory hierarchy of a computer system
 - Readout logic for cryogenic sensors does not need GHz operating speeds and adiabatic logic works best @ MHz where energy reductions are O(10⁶)
 - Control logic for quantum computing since most dissipation is in the clocks, dissipation can be moved out of the cold bath

RAPID IR Sensor, Precision Integrated-Optics Near-Infrared Imaging Experiment (PIONIER), European Southern Observatory (Paranal Observatory) By ESO - http:// www.eso.org/public/images/ ann15042a/, CC BY 4.0, https:// commons.wikimedia.org/w/index.php? curid=40978824

IBM Quantum Computer

- Do we have the right adiabatic logic type? Is there a one size fits all approach that can work?
- What energy reduction strategies can we leverage from commercial technology e.g., multi-core, dark silicon?

Things we probably need to go forward

- Tools and libraries developed for optimized, adiabatic logic design of complex circuits need to manage complexity of logic and timing on large scales
- Applications that will attract broad interest and funding
 - Internet of Things
 - Ultra-low power memory
- Continued work on competing classes of adiabatic logic

Open for Discussion

Questions on Growing Interest/Demonstrating Benefit

- IIC/ND program is attracting both government and commercial interest, so what should our strategy be going forward? Some questions to consider:
 - Do we have the right approach to garner long term interest?
 - Our comparison, while necessary, is somewhat constrained
 - Not comparing an optimal conventional solution against an optimal adiabatic solution
 - May not convince customers, competing against 50+ years of design strategy
 - We expect the current apples-to-apples comparison to show a 1-2 order of magnitude energy benefit if the approach scales to more complex designs
 - Do we have the right application?
 - Memory logic much of the operating cost of HPC systems is energy dissipated by RAM suggests a place in the memory hierarchy of a computer system
 - Readout logic for cryogenic sensors does not need GHz operating speeds and adiabatic logic works best @ MHz where energy reductions are O(10⁶)
 - Control logic for quantum computing since most dissipation is in the clocks, dissipation can be moved out of the cold bath
 - Do we have the right adiabatic logic type? Is there a one size fits all approach that can work?
 - What energy reduction strategies can we leverage from commercial technology e.g., multi-core, dark silicon?