
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

TECHNICAL SESSION III—ARCHITECTURE & HIGH-LEVEL TOPICS

Architectural, Algorithmic, and Systems

Engineering Issues for Reversible Computing

Michae l P. Frank , Cente r fo r Comput ing Resea rch

We d n e s d a y , O c t o b e r 7 t h , 2 0 2 0

CCC Workshop on Physics & Engineering
Issues in Adiabatic/Reversible Classical Computing

Approved for public release, SAND2020-10467 C

Workshop Overview

Day 1 (Mon. 10/5) Day 2 (Tue. 10/6) Day 3 (Wed. 10/7) Day 4 (Thu. 10/8) Day 5 (Fri. 10/9)

START TIME

(US PDT)
TECHNICAL SESSION I:
FUNDAMENTAL PHYSICS

TECHNICAL SESSION II:
DEVICE & CIRCUIT

TECHNOLOGIES

TECHNICAL SESSION III:
ARCHITECTURE &
HIGH-LEVEL TOPICS

FIRST DAY OF

WORKING MEETINGS

SECOND DAY OF

WORKING MEETINGS

8:30 am Workshop Intro Keynote: Ed Fredkin M. Frank,
G. Snider,

N. Yoshikawa, H.
Thapliyal, R. Wille

(9a.) Day 4 Intro. (9a.) Day 5 Intro.

9:20 am Mike Frank Mike Frank
Outbriefs from

Breakouts
Outbriefs from
Re-Breakouts

Sarah Frost-Murphy
10:00 am Norm Margolus Jie Ren

10:20 am Early Break Early Break Early Break Early Break Early Break

10:50 am Neal Anderson Kevin Osborn Erik Demaine

Concordance
Discussion #1

Concordance
Discussion #2

11:10 am Subhash Pidaparthi Ralph Merkle Robert Glück

11:30 am Karpur Shukla Joe Friedman Erik DeBenedictis

11:50 am Panel / Q&A Panel / Q&A Panel / Q&A

12:10 pm Late Break Late Break Late Break Late Break Late Break

12:40 pm
until…

Physics Breakout Techno. Breakout Arch./HL Breakouts Re-Breakouts Final Breakout &
Concordance

2

Abstract Text

The reversible computing paradigm has long-term implications that
extend beyond the device and circuit levels, eventually impacting all
aspects of computer design. Critical to the continuing development of
the reversible approach will be the appropriate consideration, by system
designers, of various overheads, scaling relations, and design trade-offs
that come into play. In this talk, we survey the various issues that
impact scaling, and briefly review some architectural, algorithmic and
higher-level techniques that can help to address them.

3

Outline of Talk

Architectural, Algorithmic, and Systems Engineering Issues for
Reversible Computing
◦ I. Basic economic/systems engineering framework

◦ Cost & efficiency metrics
◦ II. Classic computational complexity theory for reversible computing…

◦ …and, why traditional complexity theory is inadequate for practical engineering purposes!

◦ III. Physical theory of computing complexity
◦ Physically-realistic models of computation.
◦ Scaling advantages of reversible computing in physical computing models.
◦ Practical tradeoffs and scaling relations for reversible computing systems.

◦ IV. Elements of reversible architectures and languages
◦ Why new HDLs are needed for reversible architecture.
◦ Some concepts of reversible instruction-set architectures (ISAs).
◦ Some concepts of reversible programming languages.

◦ V. Conclusion

4

Part I. Economics & Systems
Engineering Framwork

Arch i tec tura l , A l g or i thmic, and Sys tems Eng ineer ing
I s sues fo r Reve rs ib l e Comput ing

Motivation from Economics / Systems Engineering
In general, efficiency 𝜂 of any process can be defined as the amount 𝑃 of some valued product produced by the process, divided by
the amount 𝐶 of cost consumed (in terms of resources, or dollars) by the process.
◦ For a computing system,

◦ 𝑃 can be amount of useful information processing performed (e.g., number of operations) by the system over its operating lifetime, and
◦ 𝐶 can be expressed the sum of manufacturing (& deployment) costs, plus operating costs over the system lifetime.

◦ We can also annualize the costs, in terms of, e.g. time-amortized manufacturing cost.
◦ More sophisticated variations that account for net present value of future returns, depreciation curves, etc., not considered here.

◦ Operating costs largely amount to energy-proportioned costs: 𝐶୭୮ୣ୰ = 𝑐ୣ୬ ⋅ 𝐸୭୮ୣ୰

◦ 𝑐ୣ୬ = operating cost per unit of energy dissipated; 𝐸୭୮ୣ୰ = energy dissipated during a given period of operation.

We can thus reduce the efficiency formula 𝜂 = 𝑃/𝐶୲୭୲ for computing to the form at right:
◦ 𝐸୭୮ = Energy dissipated due to one primitive device operation (or by one primitive device in time 𝑡ୢ).
◦ 𝑐ୢୣ୴,௧ = Amortized manufacturing cost per primitive device per unit time 𝑡.

Some observations from this equation.:

1. There are diminishing efficiency returns from decreasing either 𝐸୭୮ or the 𝑐ୢୣ୴,௧ ⋅ 𝑡ୢ term in isolation
◦  Continuing to push non-reversible technologies will ultimately reach a dead end!

2. Note that if both 𝐸୭୮ and 𝑐ୢୣ୴,௧ were decreased by 𝑁×, overall efficiency would be increased by 𝑁×. (All else being equal.)

3. Decreasing 𝐸୭୮ ⋅ 𝑡ୢ (dissipation-delay product, DdP) is often (but not always!) a win.
◦ E.g., in scenarios where total lifetime cost of operation starts out very heavily energy-dominated, total cost can be reduced by lowering

𝐸୭୮, even in cases where 𝐸୭୮𝑡ୢ stays the same, or even increases somewhat!

4. However, at any given per-device cost, decreasing 𝐸୭୮ 𝑡ୢ (dissipation as a function of delay) for any given delay value 𝑡ୢ is
always a win.

◦ Thus, this will be our focus in future work.

6

ୣ୬ ୭୮ ୢୣ୴,௧ ୢ

୭୮ ୢ
ୣ୬

ୢ

ୢୣ୴,௧

୭୮

୲୭୲ ୫୤୥ ୭୮ୣ୰

(may be amortized)

Part II. Classic Complexity Theory
for Reversible Computing

Arch i tec tura l , A l g or i thmic, and Sys tems Eng ineer ing
I s sues fo r Reve rs ib l e Comput ing

Classic Results in Reversible Computing Complexity
NOTE: All of the below results are based on the classic theory of
computational complexity, which ignores realistic physical constraints!

Bennett 1973:
◦ - Reversible time equals irreversible time.

◦ - Relation between reversible and irreversible joint space-
time complexity classes.
◦ Up to 𝚯(𝑇) space overhead factor to store intermediate “garbage” results before decomputing.

Bennett 1989:
◦ ୪୭୥మ ଷ . – Beats previous by ଴.ସଵ .

◦ “Pebble Game” algorithm.

Lange et al. 1997:
◦ – Reversible space equals irreversible space!

Frank & Ammer 1997:
◦ ை ை for a reversible oracle . (Black-box function.)

Frank 2002:
◦ Parallel variant of Bennett ‘89 algorithm improves its spacetime efficiency.

8

But… The entire traditional field of computational complexity
theory turns out to be fatally inadequate for our present purposes!

In the sense that, it is not useful at all for making any kind of reliable determination regarding whether
reversible machines are more or less efficient than irreversible ones in practice, because…

Traditional computational complexity theory ignores important
fundamental physical constraints on computation!

Such constraints include:
◦ The speed-of-light limit on information propagation velocity, which impacts communication latencies.
◦ Various limits on information density (from general relativity and field theory, and much-closer practical limits).
◦ Limits on information flux densities (follow from the above two limits).
◦ Landauer’s Principle, which sets a lower bound on entropy generation from irreversible computation.
◦ Quantum limits on rate of state change as a function of invested energy.

When realistic physical constraints such as the above are included in our theoretical framework for
modeling computation, we find that models that include a reversible computing capability strictly
dominate ones that do not!

◦ That is, they exhibit strictly greater asymptotic scaling of efficiency (i.e., strictly reduced real-world physical cost or
complexity) on a wide range of problems!
◦ And, this is certainly not at all obvious if you consider only the results from traditional complexity theory.

9

Part III. Physical Complexity Theory
for Reversible Computing

Arch i tec tura l , A l g or i thmic, and Sys tems Eng ineer ing
I s sues fo r Reve rs ib l e Comput ing

Physical Complexity Theory – Overview of Some Key Results

Frank ‘97: Assuming just classic adiabatic () scaling of dissipation with delay, if leakage is
negligible, and assuming information density/flux limits:
◦ Reversible performance per unit power consumption, or per area is unboundedly greater than irreversible.

◦ Can even be practical if manufacturing cost can be made negligible, or if we can amortize it over an unboundedly-large system lifetime.

◦ For cases where algorithmic overheads are negligible, and the mass and volume per device is fixed,
◦ Reversible performance per area scales up with order 𝑑, the square root of the thickness 𝑑 (or mass per area) of the machine.

Frank ‘99: Shows performance advantages per unit mass even when the cost of energy is
negligible (or another way of saying this is, even if the power budget is unlimited):
◦ With the same assumptions as above, reversible performance advantage per unit mass scales by as much as

order ଵ/ଵ଼ (where is number of processing elements) for some (communication-limited) problems.
◦ Note, showing an advantage per-mass makes the prospect of an overall cost-efficiency advantage more plausible.

◦ If a perfect ballistic reversible technology were invented (negligible dissipation at finite speed), the
performance boost per unit mass improves to order ଵ/ଽ

◦ E.g., for a machine with 1018 micron-scale processing elements, performance gain from reversibility on some problems is boosted by
100×.

◦ Note that this is a strong statement! We are saying that this performance boost holds no matter what architecture is chosen for the
irreversible machine, and even if energy is free!

11

Performance per-area scaling with machine thickness

Assumptions of this simple analysis include:
◦ Classic adiabatic (ୢ୧ୱୱ,୭୮) scaling

◦ Fixed operating temperature

◦ Constant volume and mass per device

◦ Bounded entropy flux density ୗ

◦ No algorithmic overheads for reversibility

Later, we will discuss the impact of considering
the algorithmic overheads of reversibility.
◦ Spoiler: Reversible computing still wins!

12
Frank & Knight 1997, doi:10.1088/0957-4484/9/3/005

Performance per-mass scaling
If the application requires no communication between processing elements, and if energy is free, no
(asymptotically increasing) speed advantage can be shown for reversible computing in that case.
◦ Because we can spread out processing elements arbitrarily far, and feed them arbitrarily large amounts of power.

Thus, showing a scalable performance-per-mass boost with no energy constraints requires considering
applications that require frequent communications between PEs.
◦ If only local communication is needed per step (below), advantage on a 3D problem is only ୈ

ଵ/ଵଶ ଵ/ଷ଺.
◦ But, if the required communication distance is 𝑁ୈ

ଵ/ଶ, advantage improves to 𝑁ଵ/ଵ଼.

◦ But, for an ideal ballistic machine, the reversible advantage even on the local 3D problem improves to ଵ/ଽ!

13 Frank 1999, https://dspace.mit.edu/handle/1721.1/9464

Accounting for Nonidealities
The above analyses assumed that leakage can be engineered to be as small as necessary for it not to
be limiting (which may be an OK assumption for some technologies) and negligible algorithmic
overheads (which may be an OK assumption for some problems).
◦ But, can we still show an advantage even when making more pessimistic/realistic assumptions?

◦ Answer is yes!

Even for worst-case problems, we can always at least
still use the “Frank ‘02” algorithm mentioned earlier.
◦ And, even better general “reversiblization” algorithms

may yet be discovered in the future.
◦ Then, as the technology is improved, and leakage is

reduced, we can adjust the parameters of the algorithm
to minimize the total cost (including both energy and
spacetime associated costs).

We find that we can reduce total lifetime system cost by
any factor of if we just reduce leakage by ଶ.ହ଺ and
time-amortized per-device manufacturing cost by ଵ.ହଽ.
◦ Example: To achieve an overall efficiency boost,

reduce leakage by 47.8M× and mfg. cost/device by 59,000×.
◦ Ambitious but doable!! This gives us a way forward, where otherwise there is none!

14

Part IV. Elements of Reversible
Architectures and Languages

Arch i tec tura l , A l g or i thmic, and Sys tems Eng ineer ing
I s sues fo r Reve rs ib l e Comput ing

Elements of Reversible Architectures and Languages

In this section, we discuss/review:
◦ Why novel features are needed in hardware description languages to support digital design of reversible

architectures.

◦ Why new algorithms are needed for reversible machines.
◦ Here we mean low-level hardware algorithms initially, but eventually also higher-level application algorithms.

◦ Some concepts of reversible instruction set architectures.

◦ Some concepts of reversible high-level programming languages.

Later speakers in this session will elaborate on some of these themes.

16

New Features Needed in Hardware Description Languages and
Design Tools to Support Adiabatic/Reversible Design

Reversible functional units will in general come with preconditions for reversibility that are required to be
satisfied in order for their operation to actually be logically and physically reversible.
◦ In general, these can include timing constraints, constraints on the logical relationship between the initial

states of different input signals and internal data values, and constraints on the relationship between the
functional unit and others that may try to control the same output node at the same time.
◦ E.g., in general, two units should not try to actively drive the same node to two different values simultaneously (true even standardly).

◦ It would be highly desirable for the HDL to support expression of such constraints, and for the simulation
environment to support checking of satisfaction of the constraints at the level of discrete simulations.
◦ To the extent that compile-time constraint checking is feasible, this should also be supported.

◦ E.g., functional units can guarantee postconditions, which can be compared against preconditions of units receiving their output.

◦ Automated compile-time verification (e.g., by theorem proving) that certain invariants are maintained by a given sequential design.

Logic synthesis tools should of course be able to synthesize reasonably efficient reversible hardware
algorithms based on known techniques,
◦ and should be capable of optimizing appropriate tradeoffs between e.g., degree of reversibility and hardware

overhead,
◦ given information about the relative economic weight of energy and hardware costs.

17

Why new algorithms are needed for reversible machines!

Briefly, because in general the most efficient reversible algorithm for a given problem could have a very different
structure from the most efficient irreversible algorithm for the same problem.
◦ In other words, no automated “reversiblization” technique can be expected to be able to discover the best (or

even a “good enough”) reversible algorithm for a given problem, even assuming that the best (or a “good
enough”) irreversible algorithm is already provided.
◦ Thus, serious research into reversible algorithms (at both the hardware and software level) is needed!

◦ Today’s speakers will mention some of the work that’s been done in this area.

One example: All-Pairs Shortest Paths graph problem 
◦ One good irreversible algorithm is Floyd-Warshall.

◦ Space 𝚯(𝑛ଶ), time 𝚯 𝑛ଷ .

◦ Simple, direct reversiblization seems to require space ଷ !
◦ However, there is an alternative algorithm (with a very different structure) for

which a reversible version takes only 𝚯 𝑛ଶ log 𝑛 space and 𝚯 𝑛ଷ log 𝑛 time.

At the hardware level, even very basic problems such as finding
the most efficient reversible -bit adder design remain unsolved!
◦ Although this is unsurprising, since even for irreversible logic, lower

bounds on circuit complexity for Boolean functions are hard to find.

18

Early History of Reversible Processor Architectures
Ed Barton (Student of Ed Fredkin; MIT class project, 1978)
◦ Conservative logic processor, with garbage stack

Andrew Ressler (Student of Ed Fredkin; MIT bachelor’s thesis, 1979;
MIT master’s thesis, 1981)
◦ Similar to Barton’s design, but more detailed. Paired branches.

Henry Baker (1992)
◦ Instruction set for a reversible pointer automaton machine.

J. Storrs “JoSH” Hall (1994)
◦ Retractile-cascade-based PDP-10-like architecture.

Carlin Vieri (MIT master’s thesis, 1995)
◦ Early Pendulum ISA, irreversible (Verilog) implementation,

full RTL-level detail.

Frank & Rixner (MIT VLSI class project, 1996)
◦ TICK: Irreversible VLSI schematics & layout implementing an

8-bit subset of Pendulum ISA, plus paired branches.

Frank & Love (MIT VLSI class project, 1996)
◦ FLATTOP: Adiabatic VLSI design of programmable reversible gate array implementing

Margolus’ BBMCA (Billiard-Ball Model Cellular Automaton).

Vieri (MIT Ph.D. thesis, 1999)
◦ PENDULUM: Fully adiabatic 32-bit VLSI implementation of PISA with paired branches.

19

TICK (MIT ‘96)

FLATTOP unit cell

FLATTOP PE mesh

FLATTOP (MIT ’96-98)

PENDULUM (MIT ’95-99)

Margolus ‘88 BBMCA

Some Reversible ISA Concepts
Early reversible architectures had a “garbage stack,”
◦ But this turns out not to be necessary.

“Non-expanding” arithmetic/logical operations:
◦ No particular overhead to do these reversibly in-place

“Expanding” arithmetic/logical operations:
◦ One reversible method: XOR result into destination register

◦ Programmer manages garbage data

Paired branches:
◦ Innovation of Ressler (‘79-81), reinvented by Frank ‘95

◦ Avoids accumulation of garbage from control-flow operations

◦ Changes control-flow semantics just a bit
◦ But, fairly ordinary forms of structured control flow are still possible!

20

Some Reversible High-Level Language Concepts
Fairly standard sorts of high-level language semantics can be supported.
◦ Some new constraints for correct reversible operation of control constructs…

◦ E.g., don’t change the truth value of an if condition within the body

The R (or ЯR, pronounced “yar”) compiler was completed in 1999.
◦ Procedural language; vaguely C-like semantics.

An example application was demonstrated:
◦ A garbage-free reversible program to simulate

the (1-D) Schrödinger wave equation of
quantum mechanics!

21

Kernel of Schrödinger simulator in ЯR:

Part V. Conclusion

Arch i tec tura l , A l g or i thmic, and Sys tems Eng ineer ing
I s sues fo r Reve rs ib l e Comput ing

Conclusion
At the most fundamental level, the basic economic/systems-engineering rationale for reversible computing
is extremely easy to state:
◦ Assuming only that energy has a nonzero minimum cost, continued scaling of time-amortized manufacturing cost

per-device cannot yield substantial reductions in total lifetime system cost of ownership for given computational
workloads (or equivalently, increases in the scale of workloads executable within given lifetime cost budgets) unless
energy dissipation per operation also continues to decline commensurately. (Which eventually requires using RC.)

Some additional key points regarding scaling of reversible machines:
◦ As 3-D stacked fabrication processes become more viable, performance per area of even classic adiabatic computing

scales up with the square root of the number of layers . (Versus no scaling possible at all for conventional logic!)
◦ As soon as manufacturing cost per-area for any given 𝐿 is brought below proportional to 𝐿, this becomes an economic win for that value of 𝐿.

◦ Physical computing theory also allows us to prove that, even if energy itself were free, adiabatic machines still would
have better asymptotic performance-per-mass scaling than irreversible machines, assuming only that the application
requires frequent inter-processor communication, and that leakage can also be scaled down accordingly.
◦ And, this is still the case even when accounting for algorithmic overheads on worst-case problems!

◦ In general, the scaling advantages of reversible computing in all of these scenarios would become dramatically even
better, if we could invent ideal ballistic reversible technologies exhibiting negligible dissipation at useful, finite speeds.
◦ And, perhaps this can be done by using concepts such as exponential adiabaticity, superadiabaticity, or shortcuts to adiabaticity (STA).

Eventually, the requirement for an increasing degree of reversibility will pervade computing at all levels,
from microarchitecture, to processor design, to the design of high-level languages and algorithms.
◦ The required changes are generally straightforward, but substantive, and require new research at all these levels!

◦ Thus, reversible computer science is an important field for the future, even apart from its possible applications in quantum computing.

23

