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The Landauer Limit

Working Definition
Erasure of an amount Ier of information from a physical system
unavoidably results in an

entropy increase of
∆S ≥ kB ln(2)Ier

energy dissipation of

∆E ≥ kBT ln(2)Ier

where
kB is Boltzmann’s constant.
T is the environment temperature.
Ier is amount of information lost irreversibly.

—Many variations on the theme of R. Landauer, IBM J. Res. Dev. 5, 183 (1961).

Valid for irreversible loss of information.
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The Landauer Limit: Controversy
Many Sources

Interpretation of Key Quantities
Entropy & energy of what? Defined and quantified how?
Information about/of what? Defined and quantified how?
What, physically, counts as info erasure? Irreversible info loss?

Interpretation/Perception of Claim
Implication of achievability, or involuible bound?
Just a consequence of the Second Law, or something else?
Too model dependent? Too model independent?

Perception of Status
Is Landauer’s Limit “extremely well established," or do...
“we still await a cogent justification of Landauer’s Principle"
—J. Norton, Stud. Hist. Philosophy Mod. Phys. 42, 184 (2011).

Methodological Objections
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This Talk

Motivating Question

How much can be established about the energy cost of irreversible
information loss in physical computing contexts...

as clearly, transparently, rigorously, and generally as possible...
from as little as possible beyond physical law...
while addressing or sidestepping common objections?

Answers

Sketch proofs of three quantum-dynamical bounds
Baseline Bound
Trial-Averaged Bound
Physical-Informatic Bound (briefly)
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Baseline Proof
Setup

Setting

Memory 
System 
A!

Heat Bath 
B!

!
	  

Globally closed composite
one-bit memory A
heat bath B

Bath assumed finite and
initially at temperature T.

Encoding

ρ̂A =

{
ρ̂A0 for “binary 0"
ρ̂A1 for “binary 1"

ρ̂A0 , ρ̂A1 distinguishable and equiprobable

Initial State

ρ̂A = 1
2 ρ̂

A
0 + 1

2 ρ̂
A
1

ρ̂Bth = exp[−ĤB/kBT]

Final State (“Reset-to-Zero" erasure)

ρ̂AB′
= Û

(
ρ̂A ⊗ ρ̂Bth

)
Û†

ρ̂A
′

= TrB[ρ̂AB′
] = ρ̂A0

ρ̂B
′

= TrA[ρ̂AB′
]
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Baseline Proof
Ingredients and Result

Change in Bath Energy

∆〈EB〉 = 〈EB′〉 − 〈EB
th〉 = Tr[ρ̂B

′
ĤB]− Tr[ρ̂BthĤB]

Lower Bound on ∆〈EB〉: Proof Ingredients

Partovi’s Inequality: ∆〈EB〉 ≥ kBT ln(2)∆SB.
SB: von Neumann entropy of bath B
T: initial temperature of bath B

Subadditivity of von Neumann entropy
Invariance of von Neumann entropy under unitary evolution

Result: Bound on ∆〈EB〉

〈EB〉 ≥ kBT ln(2)
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Baseline Proof
Features, Limitations, Objections

Features
Bound follows exclusively from dynamical law and entropic
inequalities.
No equilibrium or quasi-static assumptions: T refers only to initial
temperature of finite bath

Limitations
Very Special Case

Symmetric, one-bit memory
Uniform encoding probabilities

What about information? Reversibility?
Objection

Unsubstantiated use of “average" initial state
Initial state is only ever ρ̂A0 OR ρ̂A1 , but proof is for ρ̂A = 1

2 ρ̂
A
0 + 1

2 ρ̂
A
1
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Trial-Averaging Proof
Setup

Setting

Memory 
System 
A!

Heat Bath 
B!

!
	  

Globally closed composite
memory system A
heat bath B

Bath assumed finite and initially
at temperature T.

Encoding

ρ̂A = ρ̂Ai for symbol xi

ρ̂Ai are mutually distinguishable
xi is encoded with probability pi

Initial State (trial w/ xi encoded)

ρ̂A = ρ̂Ai
ρ̂Bth = exp[−ĤB/kBT]

Final State (reset ρ̂Ai to ρ̂Areset)

ρ̂AB′
i = Ûi

(
ρ̂Ai ⊗ ρ̂Bth

)
Û†

i

ρ̂A
′

i = TrB[ρ̂AB′
i ] = ρ̂Areset

ρ̂B
′

i = TrA[ρ̂AB′
i ]
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Trial-Averaging Proof
Ingredients and Result

Change in Bath Energy

〈∆〈EB〉〉 =
∑

i
pi

(
〈EB′

i 〉 − 〈EB
th〉
)

=
∑

i pi

(
Tr[ρ̂B

′
i ĤB]− Tr[ρ̂BthĤB]

)
Lower Bound(s) on 〈∆〈EB〉〉: Proof Ingredients (beyond baseline)

Linearity of unitary-similarity transformations
Grouping property of von Neumann entropy

Results: Bounds on 〈∆〈EB〉〉
〈∆〈EB〉〉 ≥ kBT ln(2)

[
−〈∆SAi 〉

]
for conditional reset

〈∆〈EB〉〉 ≥ kBT ln(2)
[
IAer − 〈∆SAi 〉

]
for unconditional reset (Ûi = Û ∀ i)

IAer = −
∑

i pi log2 pi = H(X): Shannon information erased from A
〈∆Si〉 =

∑
i pi
[
S(ρ̂Areset)− S(ρ̂Ai )

]
: trial-average entropy change of A

—N.G. Anderson, “Conditional Erasure and the Landauer Limit." In: Lent C., Orlov A., Porod W., Snider G. (eds) Energy Limits in
Computation. Springer, (2019).
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Trial-Averaging Proof
Features, Limitations, Objections

Features
Use of average initial state sidestepped—and vindicated
Holds for asymmetric memory; nonuniform encoding statistics;
general reset state
Resolves two distinct contributions

“information-bearing entropy"—with Shannon entropy of encoding
emerging as info measure
“non-information-bearing entropy"; trial-averaged entropy change

Connection between conditioning and reversibility explicit

Limitations
Holds only for distinguishable encoding states
Not scalable to logic, FSAs, complex computing contexts

Objection
Physicality and role of information insufficiently clear
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The Physicality of Information
An Unresolved Source of Controversy

We should not expect to have
a rigorous, agreed upon

physical quantification of the costs of information processing
in computational contexts

without
a rigorous, agreed upon

physical conception and quantification of information
in computational contexts.

———————————–

We need a “strongly physical" conception of information (SPCI)
for computational contexts

Candidate SPCI: Observer-local referential (OLR) information

—N.G. Anderson, “Information as a Physical Quantity", Information Sciences 415, 397 (2017).
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Physical-Informatic Proof
OLR-Information Measure

OLR Information

IRA = S(ρ̂R; ρ̂A) for R ∈ O
IRA = 0 for R ∈ E

S(◦; ◦): correlation entropy (or QMI)
ρ̂R: state of referent system R
ρ̂A: state of info-bearing system A

Infor	  Memory 
System 
A!

R!

Heat Bath 
B!

Observer Domain 

Environmental Domain 

B!

O
!
	  

E!
	  

—N.G. Anderson, “Information as a Physical
Quantity", Information Sciences 415, 397 (2017).

Results: Bounds on ∆〈EB〉
∆〈EB〉 ≥ kBT ln(2)

[
−〈∆SAi 〉

]
conditional reset (general Û = ÛRAB)

∆〈EB〉 ≥ kBT ln(2)
[
IAer − 〈∆SAi 〉

]
unconditional reset (Û = ÛR ⊗ ÛAB)

IRA
er = IRA − IRA′

= χ: Holevo info of encoding ensemble {pi, ρ̂
A
i }

—N.G. Anderson, “Landauer’s Limit and the Physicality of Information," Eur. Phys. J. B 91, 156 (2018).
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Physical-Informatic Proof
Features

Bound is identical to that proven by trial-averaging, but is...
generalized to arbitrary (e.g. noisy) encoding states.
scalable to logic, FSAs, complex computing contexts

Based on information measure that...
formalizes information as a physical state quantity (of RA)
distinguishes states of A that do and do not bear information
harmonizes with conceptions of information in computing contexts

All relevant copies and records are physically embodied
No ghostly “knowers" of information or “conditioners" of operations
—N.G. Anderson, “Information: The ghost in the computing machine?" forthcoming.

Bound provable using average initial states or trial averaging
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Takeaways

The Landauer Limit has a complex history—still controversial!
Resolution would aid evaluation of reversible computing
Most objections are to standard thermodynamic approaches

Quantum dynamical approaches can help
Reveals LL as a transparent consequence of dynamical law
Enables substantial generalizations
Addresses or sidesteps key objections
Clarifies link between conditioning and reversibility
Solidifies physical meaning(s) and role of “information" in LL
Enables “scalability" of LL to complex, noisy computing scenarios

Thank You
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