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The Landauer Limit

Working Definition

Erasure of an amount 7, of information from a physical system
unavoidably results in an

@ entropy increase of

AS > kgIn(2)I,

@ energy dissipation of
AE > kgTIn(2)I,,

where
@ kg is Boltzmann’s constant.
@ T is the environment temperature.
@ [, is amount of information lost irreversibly.

—NMany variations on the theme of R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
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The Landauer Limit: Controversy

Many Sources

Interpretation of Key Quantities
@ Entropy & energy of what? Defined and quantified how?
@ Information about/of what? Defined and quantified how?
@ What, physically, counts as info erasure? Irreversible info loss?

Interpretation/Perception of Claim
@ Implication of achievability, or involuible bound?
@ Just a consequence of the Second Law, or something else?
@ Too model dependent? Too model independent?

Perception of Status
@ Is Landauer’s Limit “extremely well established," or do...

@ “we still await a cogent justification of Landauer’s Principle”
—J. Norton, Stud. Hist. Philosophy Mod. Phys. 42, 184 (2011).

Methodological Objections
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This Talk

Motivating Question
How much can be established about the energy cost of irreversible
information loss in physical computing contexts...
@ as clearly, transparently, rigorously, and generally as possible...
@ from as little as possible beyond physical law...
@ while addressing or sidestepping common objections?

Answers

Sketch proofs of three quantum-dynamical bounds
@ Baseline Bound
@ Trial-Averaged Bound
@ Physical-Informatic Bound (briefly)
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Baseline Proof
Setup

Setting

Memory
System
A

Heat Bath
B

Globally closed composite
@ one-bit memory A
@ heat bath B

Bath assumed finite and
initially at temperature T.
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Encoding
4 Jagt for “binary 0"
| pt for “binary 1"
pgt, pit distinguishable and equiprobable

Initial State
I[jA = 2:00 +A%:5T4
lﬁzh - exp[ HB/kBT]

Final State (“Reset-to-Zero" erasure)
A = U(AA®ﬁh) ot
pA = Trs[p"F] = i
P8 = Tralp*F]
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Baseline Proof

Ingredients and Result

Change in Bath Energy

A(EP) = (E¥) — (E};) | = Tr[p® H®] — Tr[pf AP

Lower Bound on A(E?): Proof Ingredients

@ Partovi's Inequality: A(EP) > kT In(2) ASP.
e SB: von Neumann entropy of bath B
e T: initial temperature of bath B

@ Subadditivity of von Neumann entropy
@ Invariance of von Neumann entropy under unitary evolution

Result: Bound on A(EF)

(EB) > ksTn(2)
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Baseline Proof

Features, Limitations, Objections

Features
@ Bound follows exclusively from dynamical law and entropic
inequalities.
@ No equilibrium or quasi-static assumptions: T refers only to initial
temperature of finite bath

Limitations
@ Very Special Case

e Symmetric, one-bit memory
e Uniform encoding probabilities

@ What about information? Reversibility?
Objection
@ Unsubstantiated use of “average" initial state
1

o Initial state is only ever j5' OR 7', but proof is for p* = 155t + 151t
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Trial-Averaging Proof

Setup
Setting Encoding
p?t = pA for symbol x;
Memor
Systom p7* are mutually distinguishable
A x; is encoded with probability p;
HeatBBath Initial State (trial w/ x; encoded)
P = pft

Globally closed composite

@ heat bath B P8 = U; (5 @ pB) Ul
Bath assumed finite and initially ~ p7 = Trg [;sl.AB:] =pA.
at temperature 7. P8 = Try[p/P]
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Trial-Averaging Proof

Ingredients and Result

Change in Bath Energy
(AES) =3 pi ((EF) = (ER)) | = i (1118 B5) - o5 %))

Lower Bound(s) on (A(EB)): Proof Ingredients (beyond baseline)

@ Linearity of unitary-similarity transformations
@ Grouping property of von Neumann entropy

Results: Bounds on (A(EP))

(A(EB)) > kgTIn(2) [-(ASA)]  for conditional reset
(A(EB)) > kpTIn(2) (I} — (AS7)] for unconditional reset (U; = U V i)

@ I} = — 3", pilog, p; = H(X): Shannon information erased from A
@ (AS) =" pi [S(praser) — S(pY)]: trial-average entropy change of A

—N.G. Anderson, “Conditional Erasure and the Landauer Limit." In: Lent C., Orlov A., Porod W., Snider G. (eds) Energy Limits in
Computation. Springer, (2019).
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Trial-Averaging Proof

Features, Limitations, Objections

Features
@ Use of average initial state sidestepped—and vindicated

@ Holds for asymmetric memory; nonuniform encoding statistics;
general reset state
@ Resolves two distinct contributions
e “information-bearing entropy"—with Shannon entropy of encoding
emerging as info measure
e “non-information-bearing entropy"; trial-averaged entropy change

@ Connection between conditioning and reversibility explicit

Limitations
@ Holds only for distinguishable encoding states
@ Not scalable to logic, FSAs, complex computing contexts

Objection
@ Physicality and role of information insufficiently clear
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The Physicality of Information

An Unresolved Source of Controversy

We should not expect to have
a rigorous, agreed upon
physical quantification of the costs of information processing
in computational contexts
without
a rigorous, agreed upon
physical conception and quantification of information
in computational contexts.

We need a “strongly physical” conception of information (SPCI)
for computational contexts

Candidate SPCI: Observer-local referential (OLR) information

—N.G. Anderson, “Information as a Physical Quantity", Information Sciences 415, 397 (2017).

Neal G. Anderson (UMass Amherst) 11/14



Physical-Informatic Proof

OLR-Information Measure

OLR Information

Observer Domain ©

IRA=S(pR Y forR € O

A =0 forR € £
HeatBBatll
S(o;0): correlation entropy (or QMI) Environmental Domsin &
p*: state of referent system R
p™: state of info-bearing system A Quantiy® informaion Scianaes 415, 37 (2017).

Results: Bounds on A(EF)
A(EB) > kpTn(2) [-(ASY)]  conditional reset (general U = URAB)

A(EB) > kgT In(2) [I — (AS#)] unconditional reset (U = U ® UP)

@ [RA = [RA_ [RA — y: Holevo info of encoding ensemble {p;, 5}

—N.G. Anderson, “Landauer’s Limit and the Physicality of Information," Eur. Phys. J. B91, 156 (2018).
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Physical-Informatic Proof

Features

@ Bound is identical to that proven by trial-averaging, but is...

o generalized to arbitrary (e.g. noisy) encoding states.
o scalable to logic, FSAs, complex computing contexts

@ Based on information measure that...

o formalizes information as a physical state quantity (of R.A)
e distinguishes states of A that do and do not bear information
@ harmonizes with conceptions of information in computing contexts

@ All relevant copies and records are physically embodied
o No ghostly “knowers" of information or “conditioners” of operations

—N.G. Anderson, “Information: The ghost in the computing machine?" forthcoming.

@ Bound provable using average initial states or trial averaging
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Takeaways

The Landauer Limit has a complex history—still controversial!
@ Resolution would aid evaluation of reversible computing
@ Most objections are to standard thermodynamic approaches

Quantum dynamical approaches can help
@ Reveals LL as a transparent consequence of dynamical law
@ Enables substantial generalizations
@ Addresses or sidesteps key objections
@ Clarifies link between conditioning and reversibility
@ Solidifies physical meaning(s) and role of “information" in LL
@ Enables “scalability" of LL to complex, noisy computing scenarios

Thank You
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