DESIGN AUTOMATION FOR REVERSIBLE AND ADIABATIC CIRCUITS

Robert Wille Johannes Kepler University Linz Software Competence Center Hagenberg GmbH (SCCH)

robert.wille@jku.at

https://iic.jku.at/eda/research/quantum/

THE EMBEDDING PROCESS

- Make output patterns distinguishable
 Add 1 garbage output
- Adjust number of inputs and outputs
 Insert 1 ancillary input
- Assign precise values
 192 possibilities

Embedding is a coNP-hard problem

- Example: Transformation-based Synthesis
 - □ Transform outputs to inputs
 - $\hfill\square$ Apply gates from right to left

line	input	output
(i)	xyz	xyz
0	000	000
1	001	001
2	010	010
3	011	011
4	100	100
5	101	101
6	110	110
7	111	1 11

Solution: Skipping embedding → One-pass synthesis Drawbacks:Embedding is expensive

 $\hfill\square$ Degree of freedom is not exploited

□ Exponential growth of representation

ONE-PASS DESIGN FLOW

Example: Transformation-based Synthesis

line	input	output
(i)	xy	xy
0	00	00
1	01	01
2	10	10
3	11	11

JVI

- Start synthesis without embedding
- Modify function if problem occurs
 Store changes on buffer line
- Complete synthesis with "wrong" function
- Revert changes after synthesis
 One gate for each buffer line

DESIGN AUTOMATION FOR ADIABATIC CIRCUITS

■ Thus far:

- □ Assumed full reversibility (e.g. mapping to Toffoli gates)
- □ Caused overhead which is not necessarily needed
- →Conditional reversibility is sufficient

■ Possible two-stage approach:

- 1. Realize the function with respect to a certain logic gate library
- 2. Map the resulting netlist to an adiabatic circuit satisfying switching rules

1ST STEP: UTILIZE AND-INVERTER GRAPHS (AIGS)

- Graph-based representation of Boolean functions
- Nodes represent AND operations; edges can be inverted (denoted by black circle)
- Can easily be mapped to NAND circuits and, using DeMorgan, to NOR circuits

2ND STEP: MAP TO ADIABATIC CIRCUIT

- How to map gates?
- How to connect the gates to the power clocks?
- How to generate a corresponding waveform for these clocks?
- In all steps, switching rules need to be satisfied!

2ND STEP: USING RETRACTILE CIRCUITS

- 1:1 mapping of OR gates to transmission gates
- Circuit is composed of four stages \rightarrow four clocks are needed
- Clock signals trigger the computations through the stages
- Once stable, clocks trigger decomputations in reverse order

FURTHER READING: BROADENING DESIGN

Synthesis of Reversible Circuits

One-pass Synthesis

One-pass Design for Reversible Circuits: Combining Embedding and Synthesis for Reversible Logic, TCAD 2017

Additionally Exploiting Coding Techniques Exploiting Coding Techniques for Logic Synthesis of Reversible Circuits. ASP-DAC 2018

→ https://iic.jku.at/eda/research/one_pass_design_of_reversible_circuits

Design Automation for Adiabatic Circuits

Design Automation for Adiabatic Circuits, ASP-DAC 2018 https://arxiv.org/abs/1809.02421

Efficient Representation of Reversible Logic

Decision Diagrams

QMDDs: Efficient Quantum Function Representation and Manipulation, TCAD, 2016

→ http://iic.jku.at/eda/research/quantum_dd/

J⊻U