Speed limits on and shortcuts to reversible computing

Sebastian Deffner

Department of Physics University of Maryland, Baltimore County

FQXi

What is the problem:

- → All computations suffer from errors
- → Non-equilibrium and irreversible "excitations"

What are the tools:

- → Classical and quantum error correcting codes
- → Shortcuts to adiabaticity and thermodynamic control

Possible research agenda:

- → Characterize and classify errors in reversible computing
- → Adapt quantum and thermodynamic control methods

What is the problem:

- → "Information is physical" Landauer's principle
- → Any form of error correction at expense of additional work

What are the tools:

- → (Stochastic) thermodynamics of information
- → Thermodynamic cost(s) of optimal control strategies

Possible research agenda:

- → Develop "thermodynamics of reversible classical computing"
- \rightarrow Quantify resources for complete run including error correction

What is the problem:

- \rightarrow Quasistatic and reversible closely related
- → Fast processes limited by fundamental physics

What are the tools:

- → Classical and quantum speed limits
- → Trade-off relations between QSL and cost in STA

Possible research agenda:

- → Elucidate analogies of quantum adiabatic & classical reversible
- → Adapt CSL and optimal control for reversible computing

Let's have a chat....