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Outline

• Quantity of interest for classical reversible computing: 

dissipation-delay product.

• Ingredients: GKSL with multiple asymptotic states, dissipation results 

for single asymptotic states, quantum speed limits.

• Representations of classical bits via decoherence free subspaces.



Motivation

• Landauer’s principle already known in nonequilibrium setting, via thermal 

operations[1–3].

• Average heat ejected into environment as a function of the non-unitality of the 

quantum channel on the system.

• Entropy production rate for nonequilibrium (unique) steady states can be expressed in 

terms of the information geometry between the nonequilibrium currents[4].

• Want to characterize fundamental bounds on the dissipation of a classical 

reversible computational process.

[1] – J. Goold, M. Paternostro, and K. Modi, Phys. Rev. Lett. 114, 060602 (2015).
[2] – S. Campbell et al., Phys. Rev. A 96, 042109 (2017).
[3] – G. Guarnieri et al., New J. Phys. 19, 103038 (2017).

[4] – G. Guarnieri et al., Phys. Rev. Res. 1, 033021 (2019).



Dissipation-Delay Product

• Power-delay product (PDP) is a standard figure of merit in digital electronics, describing 

energy efficiency of logic family.

• Product of power consumption of a logical operation and duration of that operation.

• By analogy, want to define quantum thermodynamic bound on dissipation-delay product (DDP): 

product of dissipation of a process and time of process.

• All terms in DDP are pure quantum thermodynamics, applied to a suitable representation 

of classical reversible operations.

• Likely multiple (consistent) approaches to dissipation bound: resource theory, entropy production rate.

• Delay: time of operation from quantum speed limits.



Generalized Reversible Computing and Four Corners

• Classical reversible computing: surjective map from physical to 

computational states, equivalence classes.

• All states within a class must have same noncomputational entropy: related 

by a unitary transformation. 

• We permit intra-class coherences: each class can be a decoherence-free 

subspace (DFS).

• Each class in a given computational scheme must have same computational 

entropy: each DFS block has same dimension.

• GRC scheme can be modelled as sum of same-size DFS blocks.

• Open quantum system approach: GKSL with multiple asymptotic states can 

support this.

Image modified from V. Albert, arXiv:1802.00010 (Ph.D. thesis, Yale).



Thermodynamic Uncertainty Relations (TURs)

• TURs: uncertainty relation in a NESS between average currents መ𝐽 in 

the system and average entropy production rate ⟨ ො𝜎⟩. 

• (Simplified) lower bound on ⟨ ො𝜎⟩ given by ො𝜎 ≥ መ𝐽
2
⋅ Var መ𝐽

−1
.

• Essential for characterizing dissipation properties of autonomous machines, 

nanomachines, and reversible computing operations. 

• TUR recently derived[4] for any system with a single NESS.

• Dependent entirely on the information geometry of manifold of NESSs.

• Extension to multiple asymptotic states: expect an additional dependence on 

the quantum geometric tensor of asymptotic space.

[4] – G. Guarnieri et al., Phys. Rev. Res. 1, 033021 (2019). Image modified from here.

ො𝜌1

ො𝜌2

Metric between states given 
by Fisher information / 

Fubini-Study metric. (Single 
noneq. steady state.)



DDP, Bringing In Delay and Next Steps

• Asymptotic space representation: steady state-conserved current correspondence to 

express TUR as entropy production rate bound on computational states.

• Dissipation-delay product: dissipation (entropy production rate) and delay (quantum speed 

limit).

• Geometric quantum speed limit[6]: quantum speed limit in terms of quantum geometry.

• Combination can give a (possibly non-tight, but still helpful) preliminary bound on 

DDP for classical reversible operations.

• Related: extension of dissipation of quasistatic thermodynamic process[7] to multiple asymptotic 

states.

[6] – P. Poggi, Phys. Rev. A 99, 042116 (2019).
[7] – M. Scandi and M. Perarnau-Llobet, Quantum 3, 197 (2019).



Classical Computing as a Lower Dissipative Bound

• Information processing expressed as a thermal operation[5]. Dissipation:

Δ𝐸𝑄 ≥ 𝑘𝐵𝑇 𝑆 ො𝜌𝑆 − 𝑆 ො𝜚𝑆 + 𝑆 ෡𝑈𝑆𝑀𝐸 ො𝜌𝑆 ⊗ ො𝜌𝑀 ⊗ ො𝜌𝐸 ෡𝑈𝑆𝑀𝐸
†

ො𝜚𝑆 ⊗ ො𝜌𝑀 ⊗ ො𝜌𝐸

• System 𝑆 coupled to environment 𝐸 and catalyst 𝑀; same as splitting 𝐸 into 𝑀 and 𝐸.

• Channel: ℰ ො𝜌𝑆 : ො𝜌𝑆 ↦ ො𝜚𝑆 ≔ Tr𝑀 Tr𝐸 ෡𝑈𝑆𝑀𝐸 ො𝜌𝑆 ⊗ ො𝜌𝑀 ⊗ ො𝜌𝐸 ෡𝑈𝑆𝑀𝐸
†

.

• First term: information cost of classical IP. Second term: quantum IP.

• Classical IP is a lower dissipative bound! Quantum IP can be equal at best.

• Classical IP: signal states correspond to orthogonal quantum states.

• Pure unitaries and single input & output operations match classical IP dissipation bound.

[5] – D. Bedingham and O. Maroney, New J. Phys. 18, 113050 (2016).


