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Topics in Reversible Algorithms 
u  Software and Programming Languages [Glück et al ‘20] 

u  Compilers and Interpreters [Yokoyama, Glück ‘07] [Yokoyama, Axelson, Glück ‘08] 

u  Memory management [Cservenka, Haulund, Mogensen, Glück ‘18]  

u  Object oriented [Axelson, Shultz ‘16] [Haulund, Mogensen, Glück ‘17]  and    
functional programming [Yokoyama, Axelson, Glück ‘11] [Kawabe, Glück ‘03] 

u  Algorithms and Complexity Theory 

u  Universal transformations for Turing Machines and Circuit Models [later slides] 

u  Pebbling lower bounds [Li, Vitányi ‘92] [Li, Vitányi ‘96]  

u  Oracle separation [Frank, Ammer ‘17] 

u  Classification of reversible circuits [Aaronson, Grier, Schaeffer ‘15] 

u  Efficient Reversible Algorithms [later slides] 

u  Small constant factor overhead in time and space complexity 

u  Sorting Algorithms 

u  Graph Algorithms 

u  Linear Algebra 



Universal Reversible Computing 
u  History Recording  [Lecerf ‘63, Bennett ’73]  

u  Make functions bijective by storing inputs 
u  Time: 𝑇↑′ (𝑛)=𝑂(𝑇(𝑛)); Space: 𝑆↑′ (𝑛)=𝑂(𝑆(𝑛) 𝑇(𝑛)) 

u  Recursive Recomputing [Bennett ‘79]  
u  Compute to the midpoint, store it and uncompute to the last checkpoint. 

Recurse. 
u  Time: 𝑇↑′ (𝑛)=𝑂(𝑇(𝑛) lg(𝑇(𝑛)); Space: 𝑆↑′ (𝑛)=𝑂(𝑆(𝑛) lg(𝑇(𝑛))) 

u  Configuration Space Enumeration [Lange, McKenzie, Tapp ‘00]  
u  Walk the entire computation tree. Reminiscent of Savitch’s Algorithm. 
u  Time: 𝑇↑′ (𝑛)=𝑂(2↑𝑇(𝑛) ); Space: 𝑆↑′ (𝑛)=𝑂(𝑆(𝑛)) 

u  Time-Space Tradeoff  [Williams ‘00][Buhrman, Tromp, Vitanyi ‘01]  
u  Embed Configuration Space Enumeration at the bottom of a Bennett recursion. 
u  Time: 𝑇↑′ (𝑛)=𝑂(𝑆(𝑛)𝑘2↑(𝑇(𝑛)/2↑𝑘  ) ); Space: 𝑆↑′ (𝑛)=𝑂(𝑘𝑆(𝑛)) 

u  Computing with Dirty Ancilla Bits [Xu ‘15] 
u  Space can be temporarily used without knowing it’s prior state. 
u  Time: 𝑇↑′ (𝑛)=𝑂(2^𝑇(𝑛)); Space: 𝑆↑′ (𝑛)=𝑆(𝑛)+1 

 

 



Energy, Entropy, and Conditional 
Reversibility 

u  Tradeoff between space-usage and bit-erasure as a resource             
[Li, Vitányi ‘92] 

u  Define word RAM and transdichotomous RAM models with energy cost 
based on function injectivity [Demaine, Lynch, Mirano, Tyagi ’16] 

u  Formally defines conditional reversibility, allowing reversibility on input-
restricted domains [Frank ‘17] 

u  Analysis of conditional reversibility in a machine learning test case. 
[DeBenedictis, Frank, Anderson ‘16] 



What is Efficient? 

u  Asymptotically equivalent time and space usage 

u  Small constant factors in overhead 

u  Axelsen and Yokoyama define the following: 

u  𝑔(𝑛) faithful simulation has time 𝑇↑′ (𝑛)=Θ(𝑇(𝑛)) and space 𝑆↑′ (𝑛)=𝑂(𝑆(𝑛)
+𝑔(𝑛)) 

u  A hygienic simulation is 𝑔(𝑛) faithful for minimum possible 𝑔(𝑛). 



Efficient Reversible Algorithms 
u  Sorting Algorithms [Axelsen, Yokoyama ‘15] [Masuda, Yokoyama ‘19] 

u  Constant factor overhead for several algorithms 

u  Quadratic algorithms which preserves best case running time with additive space overhead  

u  Graph Algorithms [Frank ‘99] [Nøhr ‘15] [Guo, Peng, He ’18] 
u  Shortest Path and APSP  

u  Minimum Spanning Tree 

u  Data Structures [Yokoyama, Axelsen, Glück ‘08] [Axelsen, Glück ‘13] [Nøhr ‘15] [Demaine, 
Lynch, Mirano, Tyagi ’16] 
u  Adjacency List 

u  Binary Search Tree 

u  Dynamic Array 

u  Disjoint Set 

u  Min-priority Queue 

u  FFT [Yokoyama, Axelsen, Glück ‘08] 

u  Matrix Multiply [Frank ‘99] [Demaine, Lynch, Mirano, Tyagi ’16] 



Techniques for Efficient Reversible 
Algorithms 

u  Input logging 
u  Reversible sub-routines 

u  Input can be calculated from the output 

u  Call and Uncall the routine, saving space when outside the function 

u  Paired branches and protected conditionals 
u  Control flow must know where to return 

u  Conditionals unedited inside a loop are easier to maintain 

u  Pointer swapping 
u  Always maintain back pointers 

u  Instead of destroying a pointer, change where it is stored 

u  Permutation representations 
u  Permutations are bijective 



Special Purpose Reversible Computing 
u  Accelerators and heterogeneous architectures 

u  Hardware designed to be extremely performant on certain classes of algorithms. 

u  GPU, TPU, ASIC, etc. 

u  Restricted computing classes could make reversible architecture design easier. 

u  Embedded/ubiquitous computing and extreme environments 
u  Often requires extreme energy efficiency. 

u  Often only needs special purpose computation. 

u  High-performance computing 
u  Massively parallelizable algorithms, again a restricted class. 

u  Willing to invest in hardware to get performance. 

u  Quantum computing 
u  Requires substantial classical computation to control the quantum computation. 

u  The classical computing must interface with quantum circuits. 

u  Already uses adiabatic hardware, ex. superconducting circuits. 



Special Purpose Reversible Computing 
u  Special classes of algorithms 

u  Requires low-energy / high-performance computing 

u  Higher investment costs acceptable 

u  Requires study and optimization of specific classes of algorithms 

u  Software/Hardware co-design 

u  Provides targets and stepping stones for both algorithmic and hardware 
advances 



Suggested Targets 

u  Optimization algorithms 

u  Machine Learning 

u  Differential equation solvers 

u  Computational Geometry 

u  Triangulation 

u  Point/range query 

u  Ray/polygon intersection 

u  Perfect matchings 

u  Edit distance and other string comparison 
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