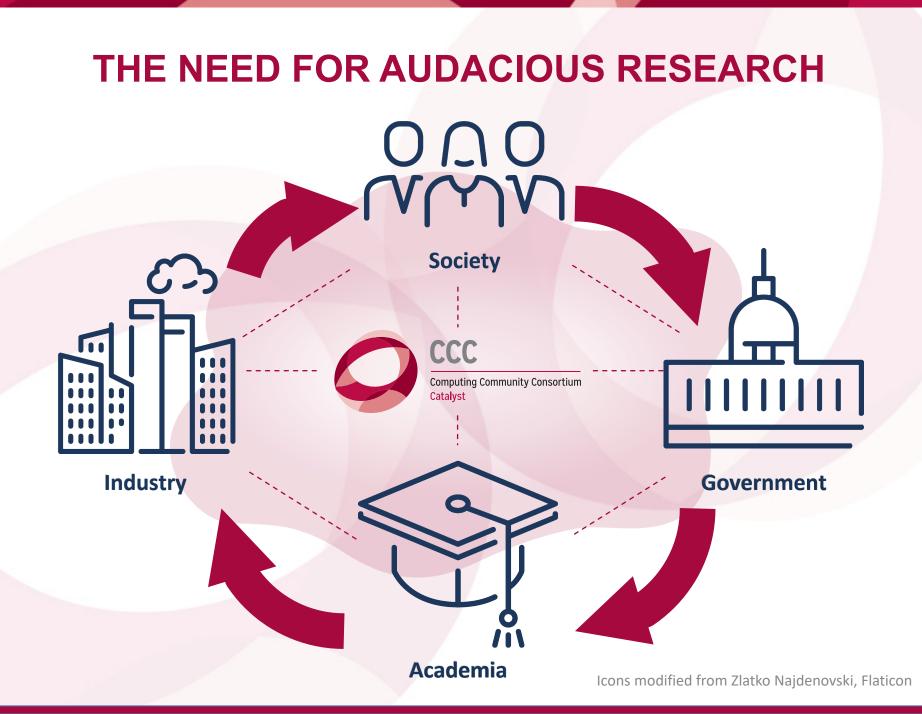
THE COMPUTING COMMUNITY CONSORTIUM: CATALYZING AND ENABLING COMPUTING RESEARCH

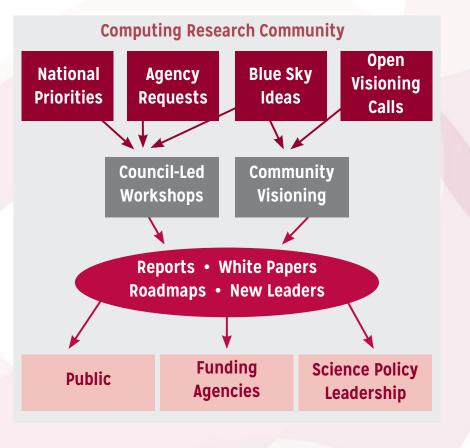
Mark D. Hill

CCC Chair Emeritus

U. Wisconsin-Madison Computer Sciences


October 2020 @ CCC Reversible Computing Workshop

- 1. What is CCC?
- 2. 20th Century Computer Architecture (flip thru example)
- 3. Implications for This Workshop


Appendix: A Vision to Compute Like Nature:

Thermodynamically

COMPUTING COMMUNITY CONSORTIUM Mission: Catalyze the computing research community & **enable** the pursuit of innovative, high-impact research

Who

- Council 20 members
- Chair, VC, & Director
- CCC/CRA Staff

Inputs: Bottom-up, Internal, & Top-Down

What:

- Workshops & Conf. Blue Sky Tracks
- Whitepapers & Social Media
- Reports Out to Community/Government

Talent Development

- Early Career Workshops & Participation
- Council Membership
- Leadership w/ Gov't (LISPI)

21st Century Computer Architecture *A CCC community white paper, May* 2012 http://cra.org/ccc/docs/init/21stcenturyarchitecturewhitepaper.pdf

- Participants & Process
- Information & Commun. Tech's Impact
- Semiconductor Technology's Challenges
- Computer Architecture's Future
- Pre-Competitive Research Justified

White Paper Participants

Sarita Adve, U Illinois * David H. Albonesi, Cornell U David Brooks, Harvard U Luis Ceze, U Washington * Sandhya Dwarkadas, U Rochester Joel Emer, Intel/MIT Babak Falsafi, EPFL Antonio Gonzalez, Intel/UPC Mark D. Hill, U Wisconsin *,** Mary Jane Irwin, Penn State U* David Kaeli, Northeastern U* Stephen W. Keckler, NVIDIA/U Texas Christos Kozyrakis, Stanford U Alvin Lebeck, Duke U Milo Martin, U Pennsylvania

José F. Martínez, Cornell U Margaret Martonosi, Princeton U* Kunle Olukotun, Stanford U Mark Oskin, U Washington Li-Shiuan Peh, M.I.T. Milos Prvulovic, Georgia Tech Steven K. Reinhardt, AMD Michael Schulte, AMD/U Wisconsin Simha Sethumadhavan, Columbia U Guri Sohi, U Wisconsin Daniel Sorin, Duke U Josep Torrellas, U Illinois * Thomas F. Wenisch, U Michigan * David Wood, U Wisconsin * Katherine Yelick, UC Berkeley/LBNL *

"*" contributed prose; "**" effort coordinator

Thanks of CCC, Erwin Gianchandani & Ed Lazowska for guidance and Jim Larus & Jeannette Wing for feedback

~\$90M thru 2020 + ~\$90M Expected

Exploiting Parallelism and Scalability (XPS)

PROGRAM SOLICITATION NSF 13-507

National Science Foundation

Directorate for Computer & Information Science & Engineering Division of Computing and Communication Foundations Division of Information & Intelligent Systems Division of Computer and Network Systems

Office of Cyberinfrastructure

Full Proposal Deadline(s) (due by 5 p.m. proposer's k

February 20, 2013

recent reports, "21st Century Computer Architecture" commissioned by the Computing Community Consortium (http://cra.org/ccc/docs/init/21stcenturyarchitecturewhitepaper.pdf) and the 2011 NRC report to "The Future of Computing Performance: Game Over or Next Level?" (http://www.nap.edu /catalog.php (record is a 1000) high light this development and its immediate in recorder, the economy, and

Award Information

availability of funde

\$15 000

\$15M on 2/2013

Anticipated Funding Amount: \$15,000,000

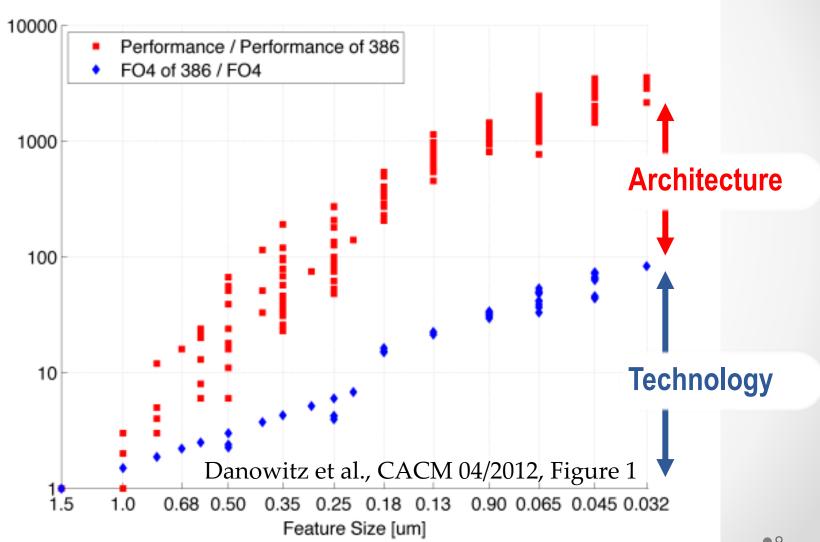
Approximately 20 awards of up to \$750,000 for periods up to

manded subject to availab

/catalog.php?record_id=id=10000) highlight this development and its impactant optioned, the economy, a society. The reports pose the question of how to enable the computational systems that will support emerging applications without the benefit of near-perfect performance scaling from hardware

improvements. NSF's Advanced Computing Infrastructure: Vision and Strategic Plan (http://www.nsf.gov /pubs/2012/nsf12051/nsf12051.pdf) published in February 2012 describes strategies that address this challenge for NSF and the research community. The XPS program is part of the larger NSF CIF21 framework.

~\$15M/year for XPS, SPX, and 2020+ PPoSS

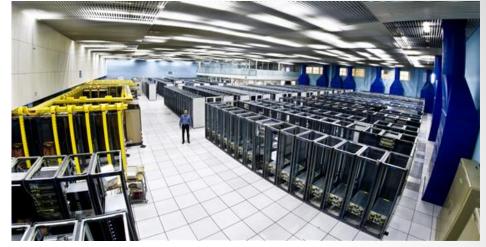

Jina

20th Century ICT Set Up

- Information & Communication Technology (ICT) Has Changed Our World
 - o <long list omitted>

- Required innovations in algorithms, applications, programming languages, ..., & system software
- Key (invisible) enablers (cost-)performance gains
 Semiconductor technology ("Moore's Law")
 Computer architecture (~80x per Danowitz et al.)

Enablers: Technology + Architecture


21st Century ICT Promises More

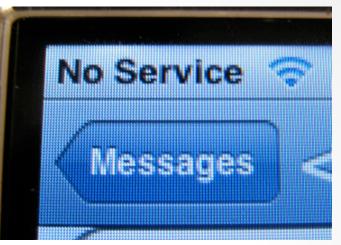
Data-centric personalized health care

"You never call, and the federal government will back me up on that." Human network analysis

Computation-driven scientific discovery

Much more: known & unknown

•10


21st Century App Characteristics

BIG DATA

"You never call, and the federal government will back me up on that." SECURE/PRIVATE

ALWAYS ONLINE

Whither enablers of future (cost-)performance gains? •••

Technology's Challenges 2/2

Late 20 th Century	The New Reality	
Moore's Law — 2× transistors/chip	Transistor count still 2× BUT	
Dennard Scaling — ~constant power/chip	Gone. Can't repeatedly double power/chip	
Modest (hidden) transistor unreliability	Increasing transistor unreliability can't be hidden	
Focus on computation over communication	Communication (energy) more expensive than computation	
1-time costs amortized via mass market	One-time cost much worse & want specialized platforms	

How should architects step up as technology falters?

21st Century Comp Architecture

20 th Century	21 st Century	
Single-chip in stand-alone computer	Architecture as Infrastructure: Spanning sensors to clouds Performance plus security, privacy, availability, programmability,	Cross- Cutting:
Performance via invisible instrlevel parallelism	 Energy First Parallelism Specialization Cross-layer design 	Break current layers with
Predictable technologies: CMOS, DRAM, & disks	New technologies (non-volatile memory, near-threshold, 3D, photonics,) Rethink: memory & storage, reliability, communication	new interfaces

Pre-Competitive Research Justified

- Retain (cost-)performance enabler to ICT revolution
- Successful companies cannot do this by themselves
 - Lack needed long-term focus
 - Don't want to pay for what benefits all
 - Resist transcending interfaces that define their products

Corroborates

- Future of Computing Performance: Game Over or Next Level?, National Academy Press, 2011
- DARPA/ISAT Workshop Advancing Computer Systems without Technology Progress with outbrief http://www.cs.wisc.edu/~markhill/papers/isat2012_ACSWTP.pdf

SUCCESSFUL VISIONING ACTIVITIES

- Engage the community and relevant stakeholders
- Facilitate broad thinking with compelling examples
- Create new avenues for (interdisciplinary) collaboration
- Encourage the community to look around the corners
- Rapidly capture & synthesize ideas from the community
- Present ideas & engage possible funders and stakeholders
- Articulate needs and barriers to research impact

IMPORTANT FOR WORKSHOPS

- Process matters: Really listen & respectively discuss

Dialectic: A discourse between two or more people holding different Hegel points of view about a subject but wishing to establish the truth through reasoned methods of argumentation. –*Wikipedia*

- Develop compelling story for
 - Our/your community
 - The public's representative, e.g., at agencies
 - o Include, "why now?"
 - It is not good enough for be right, you also must be effective.

--Neil deGrass Tyson's Father

- Finish: "They remember you for what you finish." -Dave Patterson
 - Draft material by week's end
 - Finish report/deck: v1 in weeks; final in a month or two
 - Visit agencies (virtually)

MY (OUTSIDER) THOUGHTS ON RC

- In addition to important long-term goals,
 - o Identify early/niche successes to sustain funding?
 - E.g., how FLASH operated in cameras before hard drives
- Is Reversible Computing a good name?
 - People think they know what Reversible means; most are wrong
 - Adiabatic may be better as people either know it (correctly) or wait for it to be defined, but it may have "slow" connotations. Accelerate Adiabatic?
 - Somehow use Recycling as it seems we are recycling energy or information to save energy end-to-end?

SOME DAY: THE HEILMEIER CATECHISM

- What are you trying to do? Articulate your objectives using absolutely no jargon.
- How is it done today, and what are the limits of current practice?
- What is new in your approach and why do you think it will be successful?
- Who cares? If you are successful, what difference will it make?
- What are the risks?
- How much will it cost?
- How long will it take?
- What are the mid-term and final "exams" to check for success?
- Facilitate broad thinking with compelling examples
- Create new avenues for (interdisciplinary) collaboration
- Encourage the community to look around the corners
- Rapidly capture and synthesize ideas from the community
- Present ideas and engage possible funders and stakeholders
- Articulate needs and barriers to research impact

https://www.darpa.mil/work-with-us/heilmeier-catechism