Molecular Mechanical Computing

Institute for Molecular Manufacturing
Ralph C. Merkle, Robert A. Freitas Jr., Tad Hogg, Thomas E. Moore, Matthew S. Moses, James Ryley and Damian Allis
Mechanical Computing Systems Using Only Links and Rotary Joints
Ralph C. Merkle, Robert A. Freitas Jr., Tad Hogg, Thomas E. Moore, Matthew S. Moses, and James Ryley
Journal of Mechanisms and Robotics, Dec 2018, 10(6): 061006
https://doi.org/10.1115/1.4041209

Evaluating the friction of rotary joints in molecular machines
Tad Hogg, Matthew S. Moses and Damian G. Allis
Molecular Systems Design & Engineering, 2017, 2, 235-252
https://doi.org/10.1039/C7ME00021A
Conclusion:

10^{21} FLOPS
In a sugar cube
Using 1 watt of power
With a 100 MHz clock (10 ns)

Key concept: 4-phase two rail mechanical reversible shift register
Microprocessor Clock Speeds

Cooling costs are limiting clock speeds
The Problem: I^2R
Typical nanoscale contacts are $\sim 13k\Omega^*$

One electron moving 10 nm in 10 ns dissipates $\sim 3 \times 10^{-18}$ J or ~ 750 times kT

*See the Landauer Formula, https://en.wikipedia.org/wiki/Landauer_formula. Although resistive losses can be avoided by adiabatic switching this raises other issues; see, for example, Helical Logic (http://www.zyvex.com/nanotech/helicalIntro.html).
Are there alternatives to electronics?
Mechanical Computing

www.imm.org/Reports/rep046.pdf
But!

Snapping, sliding, dragging, squeezing, forcing, pounding, smashing, ringing, tensioning, etc. etc. etc.
Rotary Joints + Links (10 to 20 nm) + Clocks

Periodic 1 Piconewton Forces
System Rules

• The periodic clocking forces are ~1 piconewton.
• Links make contact only through rotary joints.
• There are no unconstrained degrees of freedom.
• The system is driven by a four-phase clock.
• The system is fully reversible.
Additional Perspectives

• The time, t, uniquely determines the position of every link in the system, up to the uncertainty caused by thermal noise.
• The system can operate as slowly as might be desired.
• The system can operate both forwards and in reverse.
How do we compute under these constraints?
We will define two primitives:

1) A lock

2) A balance

We will then use these two primitives, along with the periodic clocking forces, to implement a shift register.
A data link can be in one of two positions. One of these positions is 0, the other is 1.
Mobile linkage

Non-mobile linkage
A lock in the (0,0) position
A lock in the (1,0) position
A lock in the (0,0) position

Top 4-Bar Linkage

Bottom 4-Bar Linkage

Connecting Link

A lock in the (1,0) position

Top 4-Bar Linkage

Connecting Link

Bottom 4-Bar Linkage

A lock in the (0,1) position

Top 4-Bar Linkage

Connecting Link

Bottom 4-Bar Linkage
Balance
A balance
A balance connected to two locks
Shift register cell with input (1,0) after clock actuation
Fredkin Gate
(logically complete)

A = 0
B
C

A = 0

B
C

A = 1
B
C

A = 1

B
C

B

C
Mechanical Clocked Fredkin Gate
(from December 2015 patent filing*)

*Mechanical Computing Systems,

WWW.IMM.ORG
What’s the energy dissipation?

1) Rotary joints have very little drag
2) Other dissipative mechanisms can have less drag
Rotary Drag Power Equation

\[P_{rd} = K_{rd} \nu_r^2 \]

where:
- \(P_{rd} \) is the power dissipated (in watts) by rotary drag
- \(K_{rd} \) is the applicable rotary drag coefficient (in J·s or kg m\(^2\)/s)
- \(\nu_r \) is the rotational speed (in radians/second) between the housing and the rotor
housing

pyramid

rotary joint

rotor

rotary joint

{111} surfaces

{110} surface

stem

{111} surfaces

{110} surface
$K_{rd} \sim 2 \times 10^{-35} \text{ J s}$

Evaluating the friction of rotary joints in molecular machines
Tad Hogg, Matthew S. Moses and Damian G. Allis
Molecular Systems Design & Engineering, 2017, 2, 235-252
https://doi.org/10.1039/C7ME00021A
What’s the energy dissipation?

1) Count the rotary joints
2) Determine their rotational speed
3) Apply the equation $P_{rd} = K_{rd} \nu_r^2$
4) Neglect other dissipative mechanisms
Dissipative Mechanisms Considered

- Sliding drag (none)
- “Snap to” (none)
- EM radiation (none)
- Resistive losses (none)
- Resonance mechanisms (very small)
- Acoustic radiation (very small)
- Acoustic radiation (extremely small when canceled)
- Entropic losses (extremely small)
- Heat flows caused by stress/strain (extremely small)
- Thermal equilibration times (under 1 ps)
10^{21} FLOPS* per watt in a Sugar Cube

- More efficient gate implementations
- More efficient implementations of floating point operations
- 10^{21} FLOPS per watt seems achievable

END OF TALK