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[Intro - 00:10] 
  

Khari: Hello, I'm your host,​ ​Khari Douglas​, ​and welcome to​ ​Catalyzing Computing​, 
the official podcast of the​ ​Computing Community Consortium​. ​The Computing 
Community Consortium, or CCC for short, is a programmatic committee of the 
Computing Research Association​. ​The mission of the CCC is to catalyze the 
computing research community and enable the pursuit of innovative, high-impact 
research.  
 
In this episode, I interview ​Dr. Nadya Bliss​, a CCC ​Council Member​ and the 
Executive Director of Arizona State's ​Global Security Initiative​. Before joining 
ASU in 2012, Bliss spent 10 years at ​MIT's Lincoln Laboratory​, most recently as a 
founding group leader of the Computing and Analytics Group. In this episode, we 
discussed her time in Lincoln Lab, what a federally funded research and 
development center (​FFRDC​) does, and the history of graph analytics. Enjoy.  
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https://en.wikipedia.org/wiki/Federally_funded_research_and_development_centers#:~:text=Federally%20funded%20research%20and%20development%20centers%20(FFRDCs)%20are%20public%2D,35.017%20by%20universities%20and%20corporations.


 

[Moving to the USA from the USSR - 01:00]  

 

Khari: Today via Zoom we have CCC Council Member and Director of the Global 
Security Initiative at Arizona State University Nadya Bliss. Nadya, how are you 
doing today? 
  

Nadya: I am pretty good. How are you? 

  

Khari: Doing well, doing well, all things considered. So let me ask you, where did 
you grow up and how did you first get involved with computer science? 
  

Nadya: So I was born in St. Petersburg, Russia. What is now St. Petersburg, Russia, at 

the time it was Leningrad in the former USSR — the Soviet Union doesn't exist 

anymore.  

 

I have always loved math. I was one of those little kids that didn't want to be a ballerina 

or a princess or a queen. I really wanted to be a mathematician. So from a very, very 

young age, I just remember really, really loving math. 

  

And then when I was almost 13, about 12 1/2, my family came to the U.S. and I 

continued to love math, but I was a little bit concerned that I would need to spend too 

much time in school and I really wanted to make sure I had a job when I graduated 

college; that was important. I had a ton of college loans and...I knew I was going to have 

a ton of college loans...I was obviously still in high school at the time. 

 

[Laughter] 

 

So I decided to try a computer programming course in high school and took computer 

science AP classes in high school. Fortunately, I had a really good math teacher that 



 

was also my computer science teacher. There's some beautiful parallels between 

computer science and math that allowed me to kind of maintain my passion for both, 

and I realized that there are aspects of computer science that are basically 

mathematics. So that's how I got into it. 

  

Khari: Ok, so in high school? 
  
Nadya: Yeah, I would say so. The Soviet Union was a funny place, a lot of the technical 

education was very advanced; so I think I had some very basic programming classes 

back in fourth grade in the Soviet Union, but in terms of a career, I think I decided [in]...it 

was either ninth or 10th grade of high school in Ohio — [a] public school in Ohio [in] a 

suburb of Cleveland — that I would major in computer science in college.  

 

I realize it's really weird. A lot of ninth and 10th graders have not picked their majors, but 

I am that person that has been planning everything pretty much since I was six. 

 

[Laughter] 

  

Khari: Yeah, that does seem pretty early. So how old were you when you moved 
from the Soviet Union to the United States? 
  

Nadya: I was 12 1/2 when my family moved. 

  

Khari: So did you notice ​—​ I mean, obviously there is some degree of culture 
shock ​— ​but in terms of, like, school and math and computer science, did you 
notice any differences when you moved? 
  

Nadya: Oh, lots of differences. And it's strange, you know, 12 1/2 it's a funny age, 

especially for us nerds. Generally that time period is a little bit challenging, but then on 



 

top of it you're that foreign kid in class that is not necessarily totally fluent in the 

language [and] it's a little extra hard. So I'll tell kind of two little anecdotes. 

  

One is not really related to the technical side, but one of my early memories of when we 

moved to the U.S. was the first time we went to a basic American supermarket. In the 

Soviet Union — and the Soviet Union was falling apart during that time as well — you 

often had to stand in line for food and kind of buy the food that was available that day. I 

remember going to one of those supermarkets and it was like this feeling of light and all 

the aisles full of all this food. It was just surreal. 

I mean, it's not a very sophisticated memory, but there's something about the 

abundance and choice that just was surreal. 

  

As far as the technical side, what I think was very interesting is...I was taken aback by 

the negative connotation, especially, ​especially​ as a teenage girl that came associated 

with being good at math. In the Soviet Union...and again, I was in St. Petersburg and I 

come from a family that's very highly educated: my mom is an engineer, my grandma is 

an engineer, and my other grandma was a medical doctor. So it was sort of expected 

that you're good at math and it didn't matter if you were a girl good at math or who you 

were good at math.  

 

I pretty much realized early on in high school that being good at math is not cool and 

this is not going to be one of those, you know, movie or ​Saved by the Bell​ high school 

experiences, and I'm just going to put my head down and work through it. That was 

strange. I thought that was odd. 

[Working at Lincoln Laboratory - 06:30]   

 
Khari: So, prior to joining GSI I know you spent a long time at ​MIT's Lincoln 
Laboratory​. What is that? Could you talk a little bit about that? 
  

https://en.wikipedia.org/wiki/Saved_by_the_Bell
https://www.ll.mit.edu/
https://www.ll.mit.edu/


 

Nadya: Yeah. So MIT Lincoln Laboratory is a federally funded research and 

development center. You sometimes hear people refer to it as an ​FFRDC​. It's not the 

only FFRDC, there are other FFRDCs in the United States. For example, ​Sandia 

National Labs​ is an FFRDC, ​Oak Ridge National Laboratories​ is an FFRDC.  

 

What's pretty special about Lincoln Laboratory is it is both formally part of MIT — 

Massachusetts Institute of Technology, the university — and also the fact that it is a 

prototyping national lab. There are a number of FFRDCs that do analyses, Lincoln 

Laboratory actually builds things like processors, prototypes, algorithms, and 

technologies. It doesn't produce them, but it builds these prototypes, and that's pretty 

cool.  

 

When you're sort of thinking about the type of things that you want to do...for someone 

like me, I really, really, really love research, but I also really wanted to have that 

research be connected to something tangible. So when I was graduating from Cornell 

with my Master’s, I applied very, very broadly. I sent applications to companies in the 

financial sector and big companies that had IT departments. Microsoft was another 

place I potentially considered going to.  

 

Lincoln Laboratory to me was one of those places that really combined all the elements 

of research and application in this one place and that's what I really loved about both 

selecting it as a place to go work and then spending 10 years there. 

  

Khari: So, can you explain a little bit more about what an FFRDC is for people 
who don't know? 
  
Nadya: Yeah. Essentially, Lincoln is a Department of Defense FFRDC. So it works very 

closely with Department of Defense on applying the most advanced concepts in 

technology research to big Department of Defense problems. There is this huge 

https://en.wikipedia.org/wiki/Federally_funded_research_and_development_centers#:~:text=Federally%20funded%20research%20and%20development%20centers%20(FFRDCs)%20are%20public%2D,35.017%20by%20universities%20and%20corporations.
https://www.sandia.gov/
https://www.sandia.gov/
https://www.ornl.gov/


 

emphasis on technical rigor, combined with a requirement for applicability to the mission 

of the Department of Defense.  

 

For example, an FFRDC like Lincoln Laboratory, typically does not do basic research, 

but often it does early-stage applied research and then applies it to the problems in the 

national security space. It is a technology FFRDC, so the mission of Lincoln Laboratory 

is technology in support of national security. The vast majority of the technical staff 

there fall into disciplines like electrical engineering, computer science, mathematics, and 

physics. It's like this place that is just full of nerds and it's amazing. 

 

[Laughter] 

  

Khari: What's the difference between basic and applied research? I know I've 
heard the terms like 6.1, 6.2, and 6.3. Could you explain those distinctions? 
  

Nadya: Yeah. Typically, when people say basic research, it's usually very, very early 

stage research. And I would also like to distinguish between basic research that is 

curiosity driven and basic research that is application driven. So, typically in those very, 

very early stages you are just testing out basic concepts. For example, in computer 

science, it may be a pseudocode for an algorithm or a set of equations to try out; if you 

are, for example, working out in graph theory and looking at sparse matrices and how 

they apply in [the] context of graph theory.  

 

Sometimes, if it’s curiosity driven, it could just be because I want to try this out. I want to 

try to understand what a projection of this type of matrix is going to look like in a two 

dimensional space — you're just curious about what would happen. If it's application 

driven you may be wanting to solve a particular problem, but it's still in those very, very 

early stages. Once research becomes applied, typically there is a particular set of 

specifications that are coming that are informed by an application. For example, you 



 

may know the scale of the data that you're working with, so [you know] how many data 

points [there are] or the types of patterns you may be interested in identifying. 

 

[Read more about DOD research appropriations structure ​here​.] 

  

Khari: Ok, that makes sense. So can you talk a little bit about the kind of work 
that you did while you were at Lincoln Laboratory? 
  

Nadya: So, when I left Lincoln Laboratory I was the group leader of the computing and 

analytics group and essentially we did a whole bunch of different computer science type 

things. We were one of the, kind of, major computer science groups in the laboratory. I 

would say, when I first started at the laboratory there wasn't as much computer science, 

there was some, but it was very much an electrical engineering shop. Then, by the time 

I left, I think there was an appreciation of computer science as a discipline as opposed 

to [a] support discipline like developing software for an electrical engineering project.  

 

The types of things that we did in my group were...for example, we worked on advanced 

computer architectures [and] instruction set architectures, particularly for either novel 

applications like graph applications, graph theoretic applications, network applications, 

or using emerging novel devices. For example, photonic interconnects as opposed to 

electronic interconnects.  

 

We also had...basically all of the high performance computing (HPC) in the laboratory 

was under the oversight of the group that I ran. A lot of my early work at Lincoln really 

focused on high-performance computing. Basically, how do we take complex signal 

processing codes and map them onto multiprocessor architectures? A lot of that work 

was happening in the group, and then we had a pretty significant effort on all types of 

analytics, but the biggest one was on graph analytics: analysis of networks, analysis of 

relationships between entities and trying to see if there is [an] emergence of patterns in 

those. 

https://fas.org/sgp/crs/natsec/R44711.pdf


 

[High Performance Computing - 13:13]   

  

Khari: Ok. Well, we'll talk more about graph theory in a bit. In the prep for this, I 
know you said that you were the group leader for the computing and analytics 
group and that Lincoln Labs’ high-performance computers were under your 
oversight. What's involved in doing oversight of an HPC? 
  

Nadya: Oh, you know, it's really funny. One of the first times I thought, “Oh, wow, this is 

what a leadership position is like,” was when....So we really thought about how do we, 

essentially, have green computing. Not just sufficient computing, but efficient computing 

per power unit, computing that uses minimum power. At the time, one of the ways to 

implement it was using these containers. I remember the location where these 

containers with high performance computing existed were somewhere by a river in 

Massachusetts. And I remember getting a call — I think it was on the weekend — that 

the river had flooded, and I was thinking, “What am I supposed to do when there's a 

container that's flooded?”  

 

[Laughter] 

 

I mean, there's lots of people that are involved that help you manage through that, but 

that's one of the examples of what's involved. But on a more serious note, I think what's 

interesting about high performance computing is how it is both a resource and a 

research area at the same time. 

  

We had amazing groups of people that...I mean, that effort has now spun out and I think 

Lincoln Laboratory now has a ​high performance computing facility​ that's its own thing. I 

believe ​Dr. Jeremy Kepner​ runs it, and I worked with Jeremy since I first started at the 

lab. So, you have a ton of amazing researchers doing this very advanced early-stage 

research on how to make the most efficient parallel and high performance computation, 

https://news.mit.edu/2016/lincoln-laboratory-establishes-supercomputing-center-0511
http://www.mit.edu/~kepner/


 

and then you also have a ton of brilliant technical people that work with the rest of the 

laboratory to help parallelize codes, and make sure code scales well, and develop these 

systems that allow for [the] minimum intervention of an individual when you have to 

rewrite a code. It’s this interesting balance that lives in between research and 

application. But then there's also flooding. So that's kind of a good example. 

 

[Laughter] 

  

Khari: Yeah. So I don't know how involved you still are with the field, but...  
 
Nadya: Not very much. 

  
Khari: Ok. Well if you can speak to it, has it changed in any way since when you 
first got involved? 
  

Nadya: So the thing that I will say — and this is probably an artifact of just getting older 

— is one thing that I've been noticing a lot of the really challenging problems persist. For 

example, mapping codes onto computer architectures is not a solved problem and still 

is the subject of theses for Ph.D. students. I mean, that's a very interesting area. 

  

The other thing that I would say is, when I first started at Lincoln Laboratory I remember 

a lot of discussions about the slowing down of ​Moore's Law​ — essentially the fact that 

we're taking for granted that computational speed is doubling about every year and a 

half; which, of course, Moore's Law is not about computational speed, but about the 

space, how many transistors you can put on a chip. But then, you know, the effect of it 

is that it's been easier to get faster processors but essentially very little work on the 

programming side. What's interesting is I was just recently in another meeting and 

people are still talking about Moore's Law.  

 

https://en.wikipedia.org/wiki/Moore%27s_law


 

So, there is both a ton of innovation and then there are these persistent themes that 

stay, and if you're lucky enough to pick good problems, you can both make impact and 

then also see longevity of that research. In many ways, high-performance computing 

has changed drastically because now we essentially have a high-performance computer 

in our pocket — because our iPhones are all high-performance computers — and 

computational speed and just the amount of time we can do both locally and remotely 

has drastically changed. But those big research questions like Moore's Law, novel 

architectures, architectures with different memory access patterns, and programming 

models for increasingly complex architectures — those problems, there's still things to 

work on in the community. 

  

Khari: Of those problems, are there any that you personally find more interesting 
or you think apply more to topic areas that you're interested in? 
  

Nadya: For me, what I think is particularly interesting...let’s see. I would say, I think the 

underlying processor architectures still have trouble with the shape of matrices that 

could be used to represent networks and graphs, and I think that's interesting. If we go 

back to the beginning of how I got into this, ultimately my passion has always been the 

algorithmic and mathematical aspects of computer science. I think hardware is brilliantly 

interesting but it is where that coupling happens that to me I find personally the most 

interesting. So, I think when I worked on developing computer architectures for graph 

algorithms, that was the most interesting type of computer architecture and processing 

system work for me personally. 

  

Khari: Ok. So you said the shape of matrices. What do you mean by shape? 
  

Nadya: I'm sorry, I probably shouldn't have said the shape, it was more the sparsity 

pattern. If you think about, let's say, traditional fluid mechanics type of codes, the sparse 

matrices, even if they’re sparse, often have a very, kind of, regular structure in them. So 

there are either dense rows, dense columns, or dense diagonals...well not dense, but 



 

diagonals that are filled out. If you have a sparse matrix that's very structured from a 

computational perspective you essentially end up having something that you can almost 

optimize on as if it is a dense matrix.  

 

However, when you go to a sparse matrix derived from a network like, for example, the 

type of social networks that Facebook or Twitter or whatever use, they do not look like 

those matrices at all. Some of them have power law structure, but there's other very 

irregular structures that you can take advantage of. There's no dense blocks, and that's 

what I meant. So, it's essentially the sparsity pattern.  

 

If you, essentially, take your matrix and create a little square where you color in where 

the non-zeros are it looks like just a weird random pattern. It's not actually random, 

generally it's not at all, but it looks very irregular and it's hard to take advantage of 

computationally from a performance optimization perspective. 

[Graph Analytics - 20:47]   

  

Khari: Ok, that makes sense. So this might be a good segue way then. What is 
graph analytics ​—​ which you said is one of the things you worked on [and what] 
your dissertation was about ​— ​and why is it important? 
  

Nadya: Maybe we can start a little bit with, if it's OK, if I can say what a graph is. Yeah? 
 

So a graph is essentially a mathematical abstraction or mathematical construct that 

allows you to represent entities — which in graph theory are referred to as vertices — 

and relationships — which in graph theory are referred to as edges. And you can 

represent graphs as edge-vertex pairs; so, you essentially can encode, like, these two 

vertices are connected so that makes an edge and these two vertices are connected so 

it's essentially a set; or you can represent graphs as an adjacency matrix, which 

essentially gives you that space matrix representation. You basically have rows and 



 

columns, represent your vertices, your entities, and then there's a non-zero entry in the 

matrix if those two vertices are connected.  

 

So that's a graph, basically an abstraction; and why graphs are important is — and of 

course I'm going to sound like someone who likes graphs here  — almost anything can 

be represented as a graph! Things like relationships between people, organizational 

structures, financial transactions, social media communication, and Girl Scout troops 

are graphs. Relationships between proteins, for example, are often studied as graphs. 

Roadways [and] transportation networks are graphs; and people use the word graph 

and network interchangeably. A network tends to be a more descriptive term. Whereas 

a graph is like the formal mathematical definition. 

  

I even think — and this is probably because I sort of loved this kind of stuff as a kid and 

I'm very much a nerd — just, I generally think of concepts as graphs. If I think about the 

brain and how things are interconnected I'll be like, “ Oh, this thing over there it 

connects to this thing over there” and that essentially is a graph. 

 

The other thing that's really interesting about graphs is that it changes the distance 

between entities. For example, if you think about social networks you have your 

geometric distance, which is in a two dimensional space, but in graph space you can 

actually be really close to someone in DC even though you don't live close together at 

all. There are these fundamental principles that encode these relationships in this highly 

multidimensional way.  

 

I mean, obviously, the Internet is a graph that's kind of an obvious one. So they're just 

everywhere and to be honest, they're not that well understood. And the other thing that I 

think is really fascinating is as we've scaled into this world of connectivity the scale of 

graphs around us has changed, and I think that also creates a more interesting space. 

I'm going to pause here because I feel like I could just go on and on and on about 

graphs. 



 

 

Khari: So I was actually going to ask you about...because you sent me your 
PowerPoint presentation from your dissertation, and it has a couple of different 
examples of different graphs.  
 
Nadya: Yes.  

 
Khari: The first one was something I read about prepping for this, the ​Seven 
Bridges of Königsberg​ problem, which I believe is sort of the original graph 
theory problem.  
 

Nadya: Yes, so that's the other thing that's so cool about it, right? I mean, graphs have 

existed way before computer science! And if we go back to the six-year-old Nadya, to 

me that was just like, there's so much mathematics that underlie it but it's also a core 

area in computer science as well. 

  
Khari: So can you explain the Bridge of Köenigsberg or I can find it on Wikipedia 
and read the…. 
  

Nayda: Hold on a second, let me just pull it up here. I could explain it but I just want to 

make sure I explain the right one. Yeah, traversing...it's traversing the bridges, right?  

 

Khari: Yeah, um, I can just read the Wikipedia summary, I guess.  
 

Nayda: Yeah, that's probably better instead of me trying to repeat it. 

  

Khari: Yeah. So, the Wikipedia summary: “The Seven Bridges of Königsberg is a 
historically notable problem in mathematics. Its negative resolution by Leonhard 
Euler in 1736 laid the foundations for graph theory and prefigured the idea of 
topology. 

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg


 

 
The city of Königsberg in Prussia at the time, was set on both sides of the Pregel 
River, which included two large islands that were interconnected to each other or 
two mainland portions of the city by seven bridges. The problem was to devise a 
walk through the city that would cross each of those bridges once and only once. 
 
By way of specifying the logical task unambiguously, solutions involving either 
reaching an island or mainland bank other than via one of the bridges, or 
accessing any bridge without crossing to its other end, are unacceptable. Euler 
proved that the problem has no solution.” 
 
So that was in the 1700s. I saw there were a couple of other examples, I don't 
know if any of them are of interest: Hamilton's game or ​Zachary’s karate club​? 
  

Nadya: The karate club is the one that I think was studied a ton before there was this 

explosion of social networks. People sort of studied the evolution of the club, and the 

breakups of the club, and all of those [things] of the clubs. So yeah, there's been a 

bunch of them.  

 

I think the difference is that even with the Euler....I mean, even there he’s already 

looking at the combinatorics. So you're basically looking at all these combinations of 

these vertices and edges to try to understand if there's any way to traverse it. So when 

you're looking at the seven bridges that is tractable. You can do it, you can actually 

enumerate all the options with seven bridges. Why is this relevant? It's relevant because 

you want to, sort of, optimize the construction of transportation networks and as you 

start to look at increasingly larger cities, larger bridge networks, and larger road 

networks it becomes increasingly more computationally expensive.  

 

And a lot of these problems — I mean, one of the things that's exciting and challenging 

about graph theory at the same time  is a lot of these problems they don't have 

https://en.wikipedia.org/wiki/Zachary%27s_karate_club


 

polynomial time solutions; so they are in this combinatorial space, which I think is why 

people like graph theory. It's computationally challenging, so you look for approximation 

algorithms or you look to see if you can actually make progress on something [and see 

if] you can find a polynomial solution, which typically has been continuously proven to 

not exist or not be found. 

  

Khari: Could you explain what you mean by a polynomial time solution? 
  

Nadya: Maybe [we can] sort of come back — the other term that often comes up here is 

NP​ complete. If you are, for example, writing an algorithm and say your algorithm 

operates on X number of data points, a polynomial time algorithm is going to take X 

squared time, or X third time, or X fourth time. In the context here, it basically ends up 

being whatever the combinatorial complexity is. So you don't have an algorithm that 

allows you to basically take an exponent of your number of data points. 

  

Khari: Ok. So your dissertation was on graphs; ​Statistical Signal Processing for 
Graphs​ is the title, I believe, and in that paper you are using large scale 
publication data sets to do some graph analysis. Could you explain sort of the 
background on that and what you found? 
  

Nadya: Sure. I'd like to start with some of the early motivation for this work, and this is 

interesting because a lot of this research and the work that I've done in graph theory 

started back at Lincoln Laboratory. I was very much inspired by statistical ​signal 

processing​ theory of detecting things. There's a very formal set of methods to detect 

some sort of entity in context of a radar return, and in graph theory detecting patterns 

and graphs tends to be a lot more heuristic, especially large graphs.  

 

So a lot of motivation for my Ph.D. dissertation, and a lot of the research that preceded 

this, was essentially how do you create these techniques to be able to detect patterns? 

[How are you] able to create distributions of signal and noise for graph theoretic data 

https://en.wikipedia.org/wiki/NP_(complexity)
https://repository.asu.edu/attachments/150568/content/Bliss_asu_0010E_14843.pdf
https://repository.asu.edu/attachments/150568/content/Bliss_asu_0010E_14843.pdf
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal_processing


 

sets. So essentially what I was curious [about]...specifically for my dissertation the 

problem that I looked for is: is there a detectable signature of the emergence of a new 

academic field in a large publication dataset? And work included both the development 

of techniques themselves and applying them to this publication data. 

  

So the techniques themselves essentially look at things like can you apply a filter — if 

you know what a pattern looks like can you apply it to a graph dataset and pull it out? 

And then the application, I actually worked with these publication data [sets] — I believe 

it was world of science data [​note: it was ​Thompson Reuters Web of Science​] — to see 

if you can actually identify those signatures.  

 

I wrote my dissertation at ASU, so I was working with a number of interdisciplinary 

scholars who have studied [the] history of science. One of the things that's really hard in 

this space is truth data. So, how do you know that a new field emerged? Like, I actually 

think in terms of interdisciplinarity this is a really good example. Computer scientists 

often postulate that they have detected something in a data set, but it's not until you go 

to a historian, sociologist, or someone else that's a domain expert that they can actually 

validate that for you. So that was something exciting, I got to work with ​Manfred 

Laubichler​ here at ASU. He is a historian of science, and he had some examples in 

evolutionary biology and other biology types of fields where new fields were merged, so 

I was able to test if my mathematical techniques were working. 

  

Khari: Ok. So in your PowerPoint about your dissertation, there is a line that says 
“results confirm that innovation leads to rewiring of networks.” Could you explain 
what that means? 
  

Nadya: Yeah. So if you think about...let's start with the type of networks that you can 

construct from publication data. Say you have a bunch of publications and one of the 

networks that is the most natural to construct is co-authorships networks. Essentially 

you make all the authors vertices — those are your entities — and then you make the 

https://login.webofknowledge.com/error/Error?Error=IPError&PathInfo=%2F&RouterURL=https%3A%2F%2Fwww.webofknowledge.com%2F&Domain=.webofknowledge.com&Src=IP&Alias=WOK5
https://sustainability.asu.edu/person/manfred-laubichler/
https://sustainability.asu.edu/person/manfred-laubichler/


 

papers that they co-authored together edges. If you and I write a paper together we're 

connected, if I also write a paper with ​Dan Lopresti​, he and I would be connected, and 

you can build out networks out of that. So, when fields are changing, those patterns are 

fundamentally changing. 

 

Say, you and I are both computer scientists and we are continuously publishing 

together, but if all of a sudden I started publishing with someone in supply chain that is 

going to create different sets of connections, and those were some of the things that we 

were able to validate and [were] able to pull out of these large data sets when we did 

the analysis. 

  

Khari: Ok. Has there been any further analysis of publication data? 
  

Nadya: Yeah. I know for sure that Manfred has continued to graduate Ph.D. students 

so...In my dissertation, I've actually identified a number of future directions and people 

have looked at it both from the perspective of techniques and from a perspective of 

applying it to broader data sets. The other thing that I would say is, generally this field is 

pretty active, so some of my colleagues at Lincoln Laboratory are still working in 

analysis of networks with these spectral graph theory techniques and matrix algebra 

techniques.  

 

One of the people I will mention is ​Ben Miller​. He's working on his Ph.D. at Northeastern 

at their ​Network Science Institute​. So there's certainly continuation of this work, and I do 

want to be very clear that I've worked on this area probably for about 10 years or so. 

There's a lot of things that Ben and I started at Lincoln Laboratory and then we've had 

collaborations with Harvard and ​Patrick Wolfe​. Then at some point it was very cathartic 

to write up a lot of this work and a dissertation. 

https://cra.org/ccc/daniel-lopresti/
https://www.khoury.northeastern.edu/people/benjamin-a-miller/
https://www.networkscienceinstitute.org/
https://www.purdue.edu/science/about/meet-the-dean.html


 

 

[Deciding to Pursue a Ph.D. - 34:39]   

 

I think one of the things that I mentioned is I don't have an exactly traditional academic 

trajectory, and sometimes people look at it and say,”Oh, you know, you did your Ph.D. 

in 18 months.” And I'm like, well, I did my Ph.D. in 18 months, but I did a lot of research 

in that 10 year career before that. So I think that's really important to acknowledge. 

  

Khari: So can you kind of lay out your timeline? We may be glossed over this in 
the beginning, as far as from when you went to undergrad until you got to ASU. 
  

Nadya: Sure. So, as I mentioned, at about six I decided I was going to be a 

mathematician. I know you said undergrad but we’re going to go back to six.  

 

[Laughter] 

 

So at six I decided I wanted to be a mathematician, at about ninth or 10th grade I 

decided that that was not necessarily a career that would allow me to pay off my future 

loans, so I decided to major in computer science. I wanted to go to a top CS program. 

At the time, as a high school senior, I remember I was deciding between Cornell and 

Carnegie Mellon, and I just fell in love with Cornell on my visit. I have the best memories 

of my time there.  

 

At Cornell, I was a computer science major. About a little bit into my computer science 

degree, I realized that I had quite a bit of AP classes that I took in my high school back 

in Ohio, and what I actually was thinking of doing was getting a double degree. I wanted 

to do a double degree in computer science, which would be a B.S. through the 

engineering school, and a math degree through the college of liberal arts and sciences; 



 

but when I went to talk to my undergrad advisor they actually gave me some really good 

advice, which, I don't remember this person, but that was probably really valuable.  

 

He basically said, “Look, why do you want to do the dual degree? You're already taking 

a ton of math in your computer science curriculum, why don't you do a Master’s? You 

can do a Master’s in four years.” So I finished my undergrad in about 3 1/2 years and 

then I did a Master’s in just one more semester. When I graduated from Cornell with a 

Master’s I went to Lincoln Laboratory.  

 

At Lincoln Laboratory I considered getting a Ph.D. because I had always wanted to go 

get a Ph.D., but I was having so much fun and I got to do research. You do the Ph.D. to 

do the research and I was getting to do the research, but then also having impact. So I 

was publishing a ton and I was doing very interesting research in a number of different 

areas. Eventually I got promoted to a level….I mean, I essentially broke the Ph.D. 

ceiling at Lincoln Laboratory, so there wasn't really career motivation for a Ph.D and I, 

intellectually, was very happy doing the work that I was doing.  

 

Then in about 2012, my husband, who is a professor here at ASU, decided that we 

should go to ASU. He didn't decide, we discussed it, obviously... 

 

[Laughter] 

 

But it was something that he really wanted to do because he wanted to be a professor, 

that's been his lifelong dream and he had an opportunity to do it. He was a senior 

scientist at Lincoln as well. So he came to ASU, and once I came to ASU I realized that 

in an academic environment it's really helpful to have the Ph.D. credential, and I actually 

had my advisor, Manfred, approach me, and he said, “Why don't you have a Ph.D.? You 

have all these publications, why don't you have a Ph.D.?”  

 



 

I said, “Well, look, I did the stuff that was the interesting thing. Do I really need this 

credential?”  

 

He's like, “You should have a Ph.D.”  

 

I said, “OK, can I get a Ph.D. in 18 months?” And I put out a plan because I'm a planner. 

I mapped it all out and I said, “If we can do it in 18 months and fulfill the requirements 

that are necessary, I will do it,” because at the time I was an assistant vice president, 

had a little kid, and a husband pursuing tenure. I was not willing to stop my job and 

obviously I needed to spend time with my kid. 

  

So, that's how I got my Ph.D., but it was great because I got to write up that body of 

work. I mean, a dissertation is a really nice thing to have. There's something very 

meaningful about it, and to be honest, like, it's a neat thing to show my daughter. Like, 

“Look, I could do this and you could do this if you want to. You don't have to, but you 

could do this.” So that's kind of the trajectory and that was five years ago. 

  

Khari: So do you think getting a Ph.D. has made a difference in your life and 
career? Would you give people that might be in a similar position as you the 
same advice? 
  

Nadya: So, I think it depends right? For me, I think there were a number of dimensions 

of it that were deeply meaningful. I actually have a document that I wrote as a ninth 

grader that said that I was going to get a Ph.D., and not just a Ph.D., but a Ph.D. in 

math and my dissertation is actually in applied mathematics. So something about 

fulfilling that childhood thing was very meaningful even though I wasn't necessarily 

planning to do that if I would have stayed in Boston. I will also say that there is a degree 

of credibility that comes with a Ph.D which is helpful, particularly when you're working in 

kind of advanced R&D and S&T.  

 



 

So I think it very much depends on the type of career you're in. In the career that I am 

in, absolutely I would recommend it. But there are many other places where you don't 

need a Ph.D. and certainly many studies will tell you not to get it. I think the other thing 

that I would say from an advice perspective [is], what helped me is that I knew why I 

was doing it. It was very clear, it was sort of like I wanted to basically cohere this body 

of work. It was relevant to the position that I held in the university, and it was, you know, 

to respond to that ninth grade Nadya. And on top of it I had a list of things I wanted to do 

research on. I think it is a lot tougher if it's not so clear. 

[Outro - 41:23] 

  
Khari: That's it for this episode of the podcast. We'll be back next week with ​part 
two​ of my interview with Dr Nadya Bliss. In that episode we discuss the work of 
Arizona State University's ​Global Security Initiative​, how to combat the spread of 
misinformation, and the impact of sustainability on security. Until next week, 
peace. 
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