
Catalyzing Computing Podcast Episode 35 – Computer Architecture
with Mark D. Hill (Part 1)

The transcript below is lightly edited for readability. Listen to “Computer Architecture
with Mark D. Hill (Part 1)” here.

[Intro - 00:10] 1

[What is Computer Architecture? - 1:01] 2

[Three C Model of Cache Behavior - 5:40] 4

[Log-based Transactional Memory - 9:58] 6

[End of Moore’s Law - 16:36] 9

[Hardware accelerators - 20:40] 10

[The Gables Model - 29:41] 14

[Three Other Models of Computer System Performance - 32:24] 16

[Outro - 36:15] 17

[Intro - 00:10]

Khari: Hello, I'm your host, Khari Douglas, and welcome to Catalyzing Computing,
the official podcast of the Computing Community Consortium. The Computing
Community Consortium, or CCC for short, is a programmatic committee of the
Computing Research Association. The mission of the CCC is to catalyze the
computing research community and enable the pursuit of innovative, high-impact
research.

In this episode I interview Dr. Mark D. Hill, a Professor Emeritus of Computer
Sciences at the University of Wisconsin-Madison. Mark recently joined Microsoft
as a Partner Hardware Architect. His research interests include parallel computer
system design, memory system design, computer simulation, deterministic
replay and transactional memory. He is the Chair Emeritus of the CCC Council. In

https://cra.org/ccc/podcast/#episode35
https://cra.org/ccc/khari-douglas/
https://cra.org/ccc/
https://cra.org/ccc/
https://cra.org/
http://pages.cs.wisc.edu/~markhill/
https://cra.org/ccc/about/ccc-council-members/

this episode Mark discusses the importance of computer architecture, the “3C
model of cache behavior”, and overcoming the end of Moore’s law. Enjoy.

[What is Computer Architecture? - 1:01]

Khari: So we're here today with Mark Hill, former chair of the Computing
Community Consortium and now retired from the University of
Wisconsin-Madison, moving to Microsoft.

How are you doing today?

Mark: I'm doing very good. It's a pleasure to be here with you, even though here is

cyberspace.

[Laughter]

Khari: So could you tell me a little bit about yourself? What is your background
and how did you get involved with computer science?

Mark: So I grew up in Detroit. Neither of my parents had bachelor's degrees, but they

made it clear to my sister and I that we had to go to college. I never questioned that and

I kind of liked math and science. I thought math was not a good way to earn a living and

as a lower middle class kid, earning a living was very important to me; so I picked

engineering, and computing was particularly fascinating.

I had early success in ninth grade with a science fair project. I actually built a

mechanical adder using numbers that you might put on your door to give the address of

your house [see the photo here]. So, computing fascinated me, I guess, as I went

further along, because when I told a computer to do something it did exactly that and no

one else in my life did. In fact, it did exactly that even when I told it to do the wrong

thing, it faithfully did the wrong thing. But the process of then trying to make it right,

called debugging, is kind of like detective work, which I actually liked as well.

https://cra.org/ccc/wp-content/uploads/sites/2/2021/06/markhill_sciencefair_1974_medium.jpg

Computing has worked out really well. Early on — you know, this was in the 1970s

when I was in high school — most people didn't really know what computers were

because the personal computer hadn't come out yet. Computers were these mysterious

things that you saw on television.

Khari: One of your primary research interests is computer architecture. So for
people who don't know what is computer architecture?

Mark: So computer architecture is the big picture of computer hardware. Computer

hardware has many complicated things and somebody has to deal with the big picture.

The name architect comes from the analogy of a building architect who also has to

handle the big picture of the building, even though others may be greater experts in the

plumbing or the electrical system. In both cases, you have goals that you want to

maximize, let's call it “performance,” and you have to do that within cost constraints,

physical constraints, and standards and things like that. Buildings have to meet certain

electrical standards and computers have to meet certain communication standards.

Computer architecture is low down in the computing stack, so it's not very visible to

society. I would liken it to the foundation of a skyscraper. That's a very essential thing,

and if you want to build a taller building you need to build a better foundation, but it's not

something that people tend to notice. We computer architects have been all about

taking what technology gives us with Moore's Law and more transistors and turning it

into better and faster computers.

By the way, another question you could ask me is why did I choose computer

architecture within computer science? And my answer to that is I just loved how we

computer architects get to cheat. We get to make things that are better than the pieces

that we make them out of. I deal with caches — which we will maybe come up later —

which makes the memory appear faster than it is, and other people do processors that

make it appear faster than they would be if you just use the underlying technology in a

straightforward fashion. I found that fascinating.

https://en.wikipedia.org/wiki/Moore%27s_law

Khari: Has most of your work been with hardware or the exchange between
hardware and software? Some combination?

Mark: Much of the work has been hardware, but it deals also with low-level software.

But even when you do hardware, there are theories going back to Alan Turing that all

hardware can compute the same thing, so the difference is how well and efficiently it

does. You need to pay attention to software and what the software is doing in order to

do good hardware.

[Three C Model of Cache Behavior - 5:40]

Khari: So you're credited as “the inventor of the widely used ‘three C model’” of
cache behavior. So what is a cache and what is the 3C model?

Mark: So a cache is a small, transparent buffer that holds the contents of a larger,

slower memory. By transparent I mean that the user of the cache of larger memory just

thinks they're getting a fast memory. They don't really see the difference between the

cache and the slower memory. The cache just sort of “automagically” has things which

the user tends to ask, making the whole thing go faster. Cache comes from a word like,

a pirate may have a cache of buried treasure somewhere. It's hidden and valuable.

Khari: Ok. So what is the 3C model of cache behavior?

Mark: So when you make an access to this cache-memory combination, if it's found in

the cache it's called a hit and if it's not found it's called a miss, kind of like baseball.

What the three C's was trying to do was to get some insights into these misses because

they're expensive.

Some misses you just have to do because you've never referenced that before — called

“compulsory misses” in the model. Some misses happen because the cache can only

be so big and still be fast — those are called “capacity misses” if you exceed the

https://en.wikipedia.org/wiki/Alan_Turing

capacity. Finally, to be able to look up things and find things faster, caches get divided

into smaller pieces called sets. If your set overflows and there's too many things there,

that's called a “conflict miss.”

By the way, I actually spent some time with a thesaurus to come up with an alliteration,

everything starting with C, and that made it much more memorable. And people have

found this to be quite intuitive to figure out what is going on in it. So it was a nice result

in my PhD dissertation.

Khari: Ok. So what happens in a computer when a cache misses.

Mark: When a cache misses it then goes to the larger memory to obtain the data that it

didn't have and brings that data into the cache. If the cache is full, it also has to evict

some other data. You're betting that the newly referenced data is more likely to be a

good thing to be in the cache than the old data, because programs tend to reference

what they've more recently referenced.

Khari: So if there's a miss, then it's slower for the computer to access the data.

Mark: Exactly. And this is a big deal because without caches — and we actually do

caches on caches on caches — computers would be a hundred or more times slower.

So your smartphone would not really be fast enough to do anything that you love

without those caches.

[Laughter]

Khari: So I saw one presentation where you're talking about the 3C model and
you said it was “wrong.” Could you expand on that? What do you mean by it
being wrong?

Mark: So the hand wave of the model says that all misses fall in these three categories,

compulsory, capacity, and conflict, but the reality is actually more complicated, because

https://www.youtube.com/watch?v=eabxuh3RZNs

when you divide the cache into these smaller pieces called sets you could, for example,

have a pattern in which the sets actually are a good thing and do better than a fully

flexible cache that could put things anywhere. These would be like anti-conflict misses

and that's not counted in the model. That's one example.

The thing to remember with a model: a model is always a simplified version of a

complex thing. George Box, the great statistician, said essentially “all models are wrong,

but some are useful.” So even though the model is wrong relative to the full detail, it's

useful because it provides very good intuition. People have told me.

[Log-based Transactional Memory - 9:58]

Khari: So you're also part of a team that created a transactional memory system
called log-based transactional memory or LogTM. So what is that?

Mark: Right. So, in the old days computers always had one processing core that did all

the work and we moved to systems that have multiple processing cores, and software

has to sort of coordinate how fast one processor core is going versus another and that

coordination can be hard. One thing that helps is if you could just say, “Hey, I want to do

this unit of work atomically. You know, get my act together, get it finished, and then go

forward.” That's called a transaction. So LogTM was a system to do transactions to

ease programming. It's so named because it uses something called a log.

Khari: What are the implications of using the LogTM system as opposed to other
established systems that existed?

Mark: Well, the benefit is that it can potentially ease programming relative to using

something called locks, which are much lower-level. We won’t go into the details, but it

does add some complexity to the hardware. So far there has been some limited

implementation of more restrictive transactional memory systems, but, sort of, not broad

success.

https://en.wikipedia.org/wiki/George_E._P._Box
https://research.cs.wisc.edu/multifacet/papers/hpca06_logtm.pdf
https://en.wikipedia.org/wiki/Log_file
https://en.wikipedia.org/wiki/Lock_(computer_science)

LogTM is even more complicated, so it hasn't been done, but it inspired a lot of thinking;

and what we see in computer architecture often is ideas sometimes gestate for many

decades before they actually go somewhere. So I'm still optimistic.

Khari: Are there any historical architectures of note that you could discuss that,
sort of, came out, didn't have much impact, and then down the line played a big
role in changing how computing is done?

Mark: Sure. One of the things that's critically important right now to supporting deep

neural networks or AI are general purpose graphics processing units (GPUs) and within

them they do something called data-level parallelism where a single operation implies

multiple manipulations. For example, one instruction — I should say, instruction not

operation — one instruction might take 64 numbers and add it to 64 corresponding

numbers for 64 results.

Ok. This idea has gone by many names and was first proposed in the 1960s with

systems like the Illinois ILLIAC IV and had some niche successes like in Cray

supercomputers, but just kind of hung around as a specialized thing for like four

decades before it exploded into being a gigantic success in graphics processing units.

Khari: Wow. So in one of the presentations I watched of you talking about the
LogTM system, you had this four quadrant chart with deferred and eager conflict
detection as, sort of, two potential settings, like on the left hand side, and on the
top of this box you had deferred and eager version management as two other
alternatives.

Could you talk about those things like what are deferred and eager conflict
detection and version management?

Mark: Ok. Well, so first of all, when you do transactions it's possible that there is a

concurrent transaction that is incompatible with it. If everything's ok you commit, and if

there's a problem you might have to abort one of the transactions. Think of a transaction

which is doing a move, like you're taking something from one data structure to another,

https://en.wikipedia.org/wiki/Data_parallelism
https://en.wikipedia.org/wiki/ILLIAC_IV
https://www.youtube.com/watch?v=SeE2vH7tlAQ&t=543s

if it commits you both remove it from the first data structure and add to the second, if it

aborts you do nothing, but you never are partially done, like you've removed it and then

it just never appeared anywhere.

Khari: Mhmm.

Mark: So what a transactional memory system has to do is first detect whether there's

any conflicts requiring an abort, and they can do so as the transactions execute, that's

called” eager,” or it can do it at the end of the transaction when it’s just sort of double

checking if everything's ok, and that's called “lazy conflict detection.”

Orthogonal to that, which two by two gives you the fourth quadrant, is lazy version

management versus eager version management. So, what lazy management is about is

that within a transaction you sometimes overwrite an old piece of data, and when you're

all done which do you need: your old piece or the new piece?

Well, you need the new piece if you commit and you need the old data if you abort. So

you need both, but only one can sort of be in the final resting place, the other has to be

in like a buffer on the side, a temporary scratch place. Eager version management says,

“Hey, I think things are good. I'm going to put the old value on the side and put the new

value in place.” That way when you commit everything's fast, whereas lazy version

management says, “Well, I'm not sure I'm going to use the new value, so I'll leave the

old value there until I know the new value is good.” LogTM was one of the first to really

do a very rich eager version management system in a transactional memory system.

Khari: Ok. Have there been more eager version management systems that have
come out since then?

Mark: Uhh, no it hasn't really caught on that much. Most of the systems that have

happened have been very limited. They don't allow big transactions, so it was easier to

just do some temporary buffering of the new values.

But at another level in database management systems, which also do transactions — in

fact, transactions long before transactional memory — they do the equivalent of eager

version management in many cases.

[End of Moore’s Law - 16:36]

Khari: Ok. You sort of mentioned this earlier, but I want to bring this up: what is
Moore's Law and what does it’s end mean for computing and for society broadly?

Mark: So there's actually two Moore's Laws. The real Moore's Law was Gordon Moore's

observation in, I think it was, 1965 that the optimal number of transistors per chip is

going to double every 18 months or two years. The reason for this was that if we got

better at making the transistors we could do a bigger chip, and if we could do bigger

chips a system might be able to be built with fewer chips; so at any given time, how big

a chip should be there would be a happy point in the middle. That happy point would

keep doubling every two years, he predicted and that prediction was right for more than

three decades. Four decades really. But it's slowing down now because, even though

we can sometimes double the number of transistors, we can't completely use them for

various energy reasons and their cost is not going down like it used to. So Moore's Law

is dramatically slowing down.

The implication of that is that Moore's Law, coupled with computer architecture,

heretofore made computers much faster at the same cost, and that allowed software

people to both run older programs much faster without any changes, without thinking

about the hardware and, more importantly, to dream up new things that ran like pigs on

the old hardware, but on the faster hardware would run well, so they could go bigger

and bigger and more ambitious. That was a great thing.

Now that Moore's Law is slowing greatly down, if we want to do more ambitious things

like this artificial intelligence we want to do, we can't just do it by waiting and hoping for

the hardware to get better. We have to figure out other ways, which is going to require a

lot of creativity in software and a lot of creativity across the hardware-software boundary

https://www.britannica.com/technology/Moores-law
https://en.wikipedia.org/wiki/Gordon_Moore

Khari: Hmm. So what are some possible ways that you’ve seen people propose to
overcome this end of Moore's Law?

Mark: Well, the way that is always hoped for is that somehow there will be a new

Moore's Law or there will be a new type of transistor, or other kind of switch, which

resumes the process, and that has happened in the past. Unfortunately, we don't have a

good candidate for the future right now.

A second thing that can help somewhat is that currently chips are relatively

two-dimensional. They're like flat plains, like northern Wisconsin not too many high-rise

buildings; and we can start building high-rise chips, which, if we can get the heat out,

can improve performance by communicating faster. Just like people in Manhattan don't

have to travel great distances to encounter other people. But there is a limit to that.

I think then the next thing we need to do is we take software, which has previously been

implemented in many layers using abstractions or approximations between the layers to

help manage complexity, and sort of dive down and cross-optimized to get the fat out.

Finally, I see a lot of promise in specialized accelerators, which target specific types of

computation to be extra efficient at. Like instead of being a general-purpose processor

that can compute anything you might be an accelerator that's good at video decoding.

[Hardware accelerators - 20:40]

Khari: Ok, so could you explain what an accelerator is and how that works?

Mark: As I said, an accelerator is a specialized hardware block that can't do everything

but does some computation particularly well. It’s named an “accelerator” because it's

faster, in many cases it's only somewhat faster. But it can really do the computation with

ten or one hundred times less energy, and energy matters. Obviously, it matters on your

smartphone because your battery doesn't run out, but it also matters in data centers

where they use a tremendous amount of power and if they can save power that’s a

good thing.

How does it work? Well, I think the right thing to say is that the beauty of a general

purpose processor is that it can do any computation to be named later. But for that

generality you get a certain amount of overhead. Maybe you can liken it to a situation

where, you know, there's a lot of management that allows great flexibility to go in many

directions, whereas another organization might have a very flat system where there's

just one person telling everybody what to do, in which case you just can't do everything

that way, you can only do the specific things people were previously trained to do.

That's kind of the way an accelerator works.

Khari: Ok, so I know you've done a lot of work with accelerator-level parallelism.
Could you talk a little bit about that work and maybe some of the other kinds of
parallelism that exist within computing architecture? I know you mentioned
data-level parallelism already.

Mark: So accelerator parallelism is a term that Vijay Janapa Reddy and I coined. It’s not

generally accepted, but we were observing the fact that smartphones had dozens of

accelerators and in any given use case, like recording or decoding video you might be

using a handful of accelerators and you use them in parallel.

This use of transistors in parallel has a long history, because when you get more

transistors and they are also faster transistors, how do you go even faster? Well, the

only way to go even faster is to use the additional transistors in parallel with the other

one, so they're getting it done faster. This is what we've been doing since the beginning,

but the problem is that as you go from thousands of transistors to ten thousands, to

hundred thousands, to millions, and billions of transistors, the same ways of using them

in parallel don't work anymore.

https://scholar.harvard.edu/vijay-janapa-reddi/home

Kind of like if you are told as a student, “Congratulations, your income doubles,” you

say, “Oh, great. I get to buy some small thing.” Many maybe doublings later you're going

to have to figure out how to buy yachts.

[Laughter]

That would be a good problem, but in computer architecture we have that problem

where we've had this many times doubling. Initially we did something called bit-level

parallelism, where you just manipulated bigger numbers or you like did the multiply in

fewer steps then with a smaller number of transistors.

Then we did instruction-level parallelism, where a processor core logically executes one

instruction after another, but we cheat — this is one of the examples of cheating — and

we execute many at the same time, like recent processors from Intel and others might

have 100 instructions in partial execution and still look serially. That's instruction-level

parallelism.

Thread-level parallelism is when we say, “Oh, we can't make the process go that much

faster, let's use multiple processors and let software have to coordinate the multiple

processors.” They could coordinate with Log TM, for example. Data-level parallelism, as

I mentioned, has now manifested with great success in GPUs, but goes back to vectors

and SIMD extensions and things like that. That's where you have a single instruction

that causes many operations to happen.

We think accelerator parallelism is an example of what's going to happen next. It's

clearly happened in smartphones and I think it's going to happen to make, for example,

self-driving vehicles much more efficient, and using cloud services where many of the

services are specialized, like your processing video and things like that.

Khari: Could you discuss a common accelerator use case?

Mark: For example, if you are using your smartphone to record video, there is a camera

sensor that is producing a stream of information — and we will focus on the video, not

the audio although the audio is done as well. You need to go through an image signal

processor, might have to go off chip to be buffered in DRAM or memory, and then it can

be processed by the GPU, maybe again to the instruction processor, the GPU, etc. In

the end it can go out to the display so that you can see it and it also might be stored in

non-volatile memory or flash so that you can save it for later.

That’s something that is an interesting thing because you're not trying to make it as fast

as possible, you're trying to make it fast enough to record the video and then you're

trying to do it with as little energy as possible to both save the battery and avoid the

phone getting too hot. The way that phones work is that you have a number of these

use cases, maybe 20, that are important, and you have to make sure that each one

works sufficiently well. And I think many computer systems are going to move toward

this kind of model.

Khari: Ok. Are there any major differences between what's on a cell phone or
another mobile device and a computer in terms of how the computer architecture
and the hardware works?

Mark: Well Khari, that's actually a great question. In 2018, I did a sabbatical at Google

with a group looking at silicon for these kinds of things, and I thought, “What do I know

about these kinds of things? Because I have never operated in the space, I've only

operated with big computers.” But I had operated with big computers for almost 30

years at that time and these devices have grown up to be real computers, so they have

all the standard components of compute, interconnect, memory, and storage, but they

have them in different proportions and they had this abundance of accelerators, which

classical computers have not had at this point, but I think will going forward. There was

a recent Apple iPhone that had 42 accelerators [see a photo of that chip here].

Khari: So prior to the iPhone with the 42 accelerators, what was a typical number
for a phone to have?

https://cra.org/ccc/wp-content/uploads/sites/2/2021/06/Mark-Hill-Apple-Chip.pdf

Mark: Typical is hard to say because they were changing pretty fast, but if you look at a

series of Apple iPhones from 2010 to 2016, the number of accelerators went from nine,

12, 17, 20 to 29, 31, 36. You can see it’s climbing fast.

Khari: Wow. So are most of these accelerators being used for things like the
video processing you gave in your example or is it a wider variety of functions?

Mark: It's a wider variety of functions so that in any given use case, like recording video,

you are not using 42 accelerators, you're using a relatively small number, like five or

seven. But presumably these were all put on there because there's some important use

case that needs them.

One of the things that I think we need to evolve is some of this stuff was put on there,

and maybe when you put it on the chip you don't know quite what the phone is going to

be used for when it comes out, so you might put things on unnecessarily. I think we

need a better science for designing chips with multiple accelerators and

accelerator-level parallelism. We tried to help a little bit with a model called Gables.

[The Gables Model - 29:41]

Khari: Could you discuss the Gables model? What is that?

Mark: Ok. So when you have a chip with 42 accelerators, how do you decide which

ones to have, which ones to select, how to size them, and things like that? It's just very

complicated. It would be nice to have a simplified picture to get a first answer, not a final

answer. Gables was our attempt to do that and it builds on something called Roofline.

The Roofline model was for a homogeneous multicore chip, which is a chip that every

processor core is the same, and it modeled the chip with a peak computation

performance and a peak off-chip communication bandwidth in a plot that looks like a

roofline. So what Gables did is it said, “We can't model our 42 accelerator's that way,

https://research.cs.wisc.edu/multifacet/gables/
https://en.wikipedia.org/wiki/Roofline_model

but we can perhaps do a roofline for each accelerator” — because each accelerator is

different, they're heterogeneous — “and then find a way to combine them to model the

whole chip.” That's what Gables does, and Gables gets its name by a roof that has

many rooflines.

Khari: Ok. So have you used this model on any products or technologies that
have shown promise?

Mark: I have not used it on products. However, I'm aware of at least two instances, one

where it was incorporated in the tool chain of a major tool provider — I'm not sure I’m

allowed to say the name — and I know it was used for the preliminary development of

some products at a major IT company. And they're still using it, but I think that's

confidential.

But I will say it, I think it's better than the community thinks it is at this point, because it's

not like, you know, super popular.

[Laughter]

Khari: Yeah, maybe now people will think more about it. Anything else you want
to say about the Gables model?

Mark: Um, I'll just say this: I think it's important when you encounter a complicated

system to try to figure out a way to get your head around it, and Gables was our attempt

to do that. I think that model has value even if you don't believe the numbers, because it

gives you a way to frame your thinking about the system and pay attention to these

communication and these performance things and how they interact. That's valuable

even if you don't believe the output of the number.

[Three Other Models of Computer System Performance - 32:24]

Khari: Yeah, that makes a lot of sense. So talking about models, I saw you wrote a
paper in 2018 called Three Other Models of Computer System Performance, and
in that you argue for the use of more simple models beyond Amdahl’s law, such
as bottleneck analysis, Little’s Law and M/M/1 Queue.

So could you talk about that paper? What was the argument you were making
there?

Mark: Right. So, I have found that computer architects are too quick to go to simulation.

Simulation is where you write a computer program that mimics the system that you're

studying, potentially very well, but really very slowly. In fact, some of our most cited

papers are simulation. I think you can also complement this with these simple models

that are maybe less accurate but give you a lot of insight.

Amdahl’s law is an example of that. It's fairly well known that you have a part of a

computation that you're speeding up and a part that you're not, and Amdahl’s law shows

you that that part that you're not speeding up really limits what you can do unless it's

vanishingly small.

These other three models I find equally helpful for getting these first answers, not the

final answers. Bottleneck analysis looks at, sort of, information flow. Think of a computer

system as a whole bunch of pipes, and you're trying to figure out how fast the water can

flow. It turns out that Roofline and Gables are actually just specific instances of

bottleneck analysis.

Little's law is broadly applicable, it relates the number of items in a system to the

product of the average time an item stays in the system times the average rate that

items come in. That's very abstract, but, for example, if there are four hundred current

https://arxiv.org/pdf/1901.02926.pdf
https://en.wikipedia.org/wiki/Amdahl%27s_law
https://en.wikipedia.org/wiki/Little's_law
https://en.wikipedia.org/wiki/M/M/1_queue

students and one hundred students arrive every year then the average student stays

four years. And what's powerful about Little's law is it relates those three numbers, and

if you can easily figure out two of them you can use Little’s law to find the other. David

Wood and I used to do a lot of consulting, and we joke that we just kept applying Little’s

law to systems to fix performance bugs

Finally, an M/M/1 Queue has to deal with the fact that when things arrive at random,

whether they're some request in a computer system or people arriving at a store at

random, is not exactly equal. One way to model randomness is something called

Markovian, which basically says when I arrive at the store is independent of when

anyone else decided to arrive at the store. And what an M/M/1 Queue says is if people

are coming in at random — Markovian, that's the first M — and they're serviced in about

a random amount of time — that's the second M — when we service one at a time, it

shows you how well you can...how long people are going to have to wait depending on

how busy things are. It shows, for example, that you can't make a system that is always

busy and has very low waiting times, it's a severe trade off, under the assumption of

these random arrivals. That's why doctors, for example, don't allow random arrivals.

They make you schedule appointments. But this is a very powerful law to think about. It

is an example of a rich field called queuing theory.

[Outro - 36:15]

Khari: That's it for this episode of the podcast. We'll be back next week for part
two of my interview with Mark Hill. In that episode, Mark discusses the
importance of hardware security, the impact of AI on hardware and working in
academia versus industry. Until then, remember to like, subscribe, and rate us
five stars wherever you get your podcast.

Learn more about the work of the CCC on our website at cra.org/ccc and find us
on social media to stay up to date on all our latest activities. Until next time,
peace.

http://pages.cs.wisc.edu/~david/
http://pages.cs.wisc.edu/~david/
https://cra.org/ccc/

