
VISIONS IN THEORETICAL
COMPUTER SCIENCE
A Report on the TCS Visioning Workshop 2020

The material is based upon work supported by the
National Science Foundation under Grants No. 1136993
and No. 1734706. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the authors and do not necessarily reflect the
views of the National Science Foundation.

3

VISIONS IN THEORETICAL
COMPUTER SCIENCE

A REPORT ON THE TCS VISIONING WORKSHOP 2020

Edited by:

Shuchi Chawla (University of Wisconsin-Madison)
Jelani Nelson (University of California, Berkeley)
Chris Umans (California Institute of Technology)

David Woodruff (Carnegie Mellon University)

4

VISIONS IN THEORETICAL COMPUTER SCIENCE

Foreword .. 5
 How this Document came About ... 6

Models of Computation ...7
 Computational Complexity ..7
 Sublinear Algorithms ... 9
 Coding Theory and Communication .. 11
 Distributed Computing ... 12
 Quantum Computing ... 14

Foundations of Data Science ...17
 Data-driven Algorithm Design ...17
 Foundations of Machine Learning .. 19
 Optimization ... 22

Cryptography ..24

TCS for Other Domains .. 26
 A Firm Foundation for Privacy Grounded in TCS .. 26
 TCS for Social Good ... 28
 An Algorithmic Approach to Economic Systems .. 31

Workshop Participants ... 34

Table of Contents

5

VISIONS IN THEORETICAL COMPUTER SCIENCE

Foreword
Theoretical computer science (TCS) is a subdiscipline of
computer science that studies the mathematical foundations
of computational and algorithmic processes and interactions.
Work in this field is often recognized by its emphasis on
mathematical technique and rigor. At the heart of the field
are questions surrounding the nature of computation: What
does it mean to compute? What is computable? And how
efficiently? These lines of inquiry applied to different models
and settings of computation have resulted in new disciplines
within and beyond computer science including learning theory,
cryptography and security, quantum computing, economics
and computation, computational biology and computational
geometry. In recent decades, the field expanded its reach into
many varied topics at the forefront of technology, physical
sciences and social sciences. The infiltration into different areas
helped bring mathematical rigor and algorithmic thinking to
areas such as privacy, fairness, and data science. This breadth
of application areas is interconnected through a technical core
of computational complexity and algorithm design.

This document describes some recent and current directions
of research within TCS, how these directions contribute to
the betterment of the discipline and the betterment of society
and some of the technical challenges that lie ahead. A primary
goal of this document is to convince the reader that strength
in theoretical computer science is vital to the health of the
computer science field as a whole, as well as, the continuation
of technological progress in the 21st century.

Theoretical Computer Science impacts computing and society by
identifying key issues in new areas and framing them in ways
that drive development. In fact much of the history of Computer
Science, as viewed through the lens of Turing Award citations,
is filled with examples of major fields that were pioneered by
TCS researchers: cryptography (Adleman, Rivest, Shamir, Micali,
Goldwasser); the modern theory of algorithms and computational
complexity (Cook, Karp, Hopcroft, Tarjan, Hartmanis, Stearns,
Blum, Yao); the foundations of machine learning (Valiant); and
distributed systems (Lamport, Liskov). More recently, TCS has
played a central role in the creation of the fields of quantum
computation, algorithmic economics, algorithmic privacy and
algorithmic fairness.

A unique feature of Theoretical Computer Science is its ability
to discern computation and algorithms in settings beyond
Computer Science proper. Examples include neuroscience, where
one models systems within the brain and nervous system as
computation by networks of discrete elements (for a seminal
example of this perspective, see Valiant’s “Circuits of the Mind”);
systems biology, where networks of interacting genes or
proteins are understood via computational models; economics,
where self-interested interacting entities can be naturally seen
to be performing a distributed computation; and physics, where
the fundamental notions of information and computation, and
insights from TCS, are deeply entwined in the current frontiers
of research in gravity and quantum mechanics. Breakthrough
results in pure mathematics and statistics by TCS researchers
are becoming increasingly common (for example, the refutation
of the Connes Embedding Conjecture, and the proof of the
Kadison-Singer Conjecture).

Key technologies that grew out of Theoretical Computer
Science have had a major impact in industry. Examples include
the discovery of the principles that led to Google’s PageRank
algorithm; the development of Consistent Hashing, which in
large part spawned Akamai; various key innovations in coding
theory such as rateless expander codes for fast streaming, polar
codes as part of the 5G standard, and local reconstruction codes
for cloud storage; fast, dynamic algorithms that form the basis
of navigation systems such as Google Maps and Waze, and other
applications; quantum computing; cryptographic innovations
such as public-key encryption and multiparty computation that
form the foundation of a secure Internet; and the cryptographic
underpinnings of cryptocurrencies and blockchain technology.

Despite this wide range of application areas and intersecting
scientific disciplines, the field of TCS has thrived on the basis
of a strong identity, a supportive community, and a unifying
scientific aesthetic. The field is defined by a well-developed
common language and approach that exposes previously
unknown connections between disparate topics, thereby driving
progress.

This document presents the case for robust support of
foundational work in TCS, structured so as to allow unfettered
exploration guided by the opportunities and needs of a rapidly
changing and dynamic field, and thereby bringing about the
greatest possible impact to society. This model has been
extraordinarily successful in the past.

6

VISIONS IN THEORETICAL COMPUTER SCIENCE

A STRONG THEORETICAL COMPUTER
SCIENCE FOUNDATION
The core of TCS encompasses some of the deepest and most
fascinating questions in Computer Science and Mathematics,
including the P vs. NP problem and many other fundamental
questions about the possibilities and limitations of algorithms
and computation. But it is also teeming with more modern
problems that arise from an expansive view of computation
as a language for understanding systems in many contexts.
TCS has a unique way of framing these problems in terms of
tradeoffs between computational resources; for example,
between optimality and computational efficiency, online versus
offline computation, centralized versus distributed equilibria, or
degree of interaction versus security. Important fields such as
streaming algorithms, rigorous cryptography, and algorithmic
privacy were the direct outgrowth of this “TCS approach”. Core
TCS research focuses on a computational problem as the central
object, rather than the development of prevailing algorithms and
methods for a given problem. This viewpoint drives innovation
and has led to unconventional approaches and solutions, often
by identifying previously unknown connections between fields.

Importantly, these developments and many others arise from
a strongly supported core of TCS researchers adept at
identifying important problems from a broad range of settings,
applying the tools of TCS, pulling in (and in some cases
developing) sophisticated mathematics, and following the
research wherever it leads.

Sustained and predictable investment in core TCS, supporting the
best ideas wherever they arise, is key to continued innovation
and success in the coming decade. While it is difficult to predict
which advances will have the widest impact, past experience
shows that investing in core TCS produces profound returns.

HOW THIS DOCUMENT CAME ABOUT
Every ten years or so the TCS community attends
visioning workshops to discuss the challenges and recent
accomplishments in the TCS field. The workshops and the
outputs they produce are meant both as a reflection for the TCS
community and as guiding principles for interested investment
partners. Concretely, the workshop output consists of a number
of nuggets, each summarizing a particular point, that are
synthesized in the form of a white paper and illustrated with
graphics/slides produced by a professional graphic designer.

The second TCS Visioning Workshop was organized by the
SIGACT Committee for the Advancement of Theoretical Computer
Science and took place during the week of July 20, 2020. Despite
the conference being virtual, there were over 76 participants,
mostly from the United States, but also a few from Europe and
Asia who were able to attend due to the online format.

The workshop included a very diverse set of participants
including people from industry and from fields other than TCS.
Represented sub areas included: Data-Driven Algorithms, Coding
Theory and Communication, Complexity Theory, Optimization,
Cryptography, Foundations of Machine Learning and Data
Science, Sublinear Algorithms, Distributed Computing, Economics
and Computer Science, Fairness and Social Good, Privacy, and
Quantum Computing.

Workshop participants were divided into categories as reflected
in the sections of this report: (1) models of computation; (2)
foundations of data science; (3) cryptography; and (4) using
theoretical computer science for other domains. Each group
participated in a series of discussions that produced the
nuggets below.

7

VISIONS IN THEORETICAL COMPUTER SCIENCE

COMPUTATIONAL COMPLEXITY
Complexity theory tries to classify computational problems
according to the resources they use and then relate the classes
to one another. The process often involves reductions of the
form: any algorithm for solving Problem A can be used to solve
Problem B, and thus, the resources required of an algorithm
for solving Problem A must be, at least, those required of
any algorithm for solving Problem B. Using such reductions,
celebrated work has designed a universally optimal algorithm
for a wide range of discrete optimization problems. While
traditional complexity theory focuses on separating “easy”
from “hard” problems, a recent trend looked at more fine-
grained measures, relating problems to each other so that we
can understand exactly how easy or how hard such problems
are. Yet another explanation complexity theory has provided is
how hard problems can be used as a source of randomness,
that is, a sequence of bits may look random to an algorithm
with limited resources, but be non-random to more powerful
algorithms.

A Universal Algorithm for Discrete
Optimization
Automating algorithm design for finding
the best solution.

A wide range of societal, economic, and computational
challenges can be viewed as discrete optimization tasks. These
tasks include finding the best way to allocate constrained
resources like trucks to shipments, creating schedules for
airplanes, choosing the best routes for delivery, or finding the
best representation of data for machine learning.

Research over the last two decades has shown that a
single, simply-tunable (universal) algorithm – semidefinite
programming based on sum-of-squares proofs (also known as
the SOS algorithm) – is the most successful algorithm for all
of these problems. Moreover, breakthrough work in complexity
has indicated that the SOS algorithm is not only a good method,
but is the best possible method among any that are currently
and efficiently implementable.

Unifying Modern Computational
Challenges
Fine-grained complexity connects disparate
problems together.

What do the following have in common: finding the differences
between two documents, searching for pictures in your gallery
resembling the one you just took, and uncovering small groups
of mutual friends? For all of these search tasks, computer
scientists know quick and inexpensive methods for solving
them on moderately-sized examples. However, the same
methods are challenged on larger examples, arising in the
era of big data. When the “documents” are enormously-long
human DNA strands, the galleries have billions of images, and
the friends are on social networks with billions of users, these
formerly-quick methods can become rather slow, consuming
massive energy, memory, and other resources. The theory of
fine-grained complexity provides a precise understanding of
how the best methods to solve these and many other problems
will scale with the size of the input data.

A web of interconnections has been revealed, showing that
the challenges for many different domains are deeply linked

Models of Computation

8

VISIONS IN THEORETICAL COMPUTER SCIENCE

through a few “core challenge” problems. These core problems
reveal common bottlenecks that must be overcome to achieve
more efficient programs in a wide range of applications. This
gives evidence that the “slow down” of these algorithms on
larger inputs is not an artifact of certain programs we run, but a
deeper phenomenon: a computational “law of nature” to which
any program must conform. Beyond the scientific benefits of
understanding how core problems relate to each other, a fine-
grained understanding of computational difficulty could be used
to design new tools in cybersecurity, and improve blockchain
technology (the basis for bitcoin and other e-currencies), where
it is crucial to know precisely how much work must be done to
solve a problem.

Harnessing Unpredictability
The power of random choices in computation.

Randomized algorithms pervade both the theory and practice of
computer science. In this instance randomness can be defined
as a resource rather than randomness in the input data. In
other words, the algorithm is allowed to toss coins and make
decisions based on the results, but the input to the algorithm
is arbitrary. Perhaps surprisingly, randomized algorithms are
often much more efficient for solving tasks than algorithms
that do not make random choices.

Beyond computer science, randomness is an enigmatic
phenomenon that has long fascinated and frustrated
philosophers, physicists, and mathematicians alike. Complexity
theory pioneered the realization that randomness is not
absolute, but relative to the way it is used. Using this realization,
complexity theory discovered a deep duality between
randomness and the existence of “hard problems” — problems
that cannot be solved by any efficient program. Paradoxically,
this means that hard problems are useful in designing efficient
programs in other areas. This has led to breakthroughs in
many fields, including modern cryptography, privacy, scientific
simulation and cloud computing.

References
Ball, M., Rosen, A., Sabin, M., & Vasudevan, P. N. (2017). Average-

case fine-grained hardness. Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, 483-496.
doi:10.1145/3055399.3055466

Ball, M., Rosen, A., Sabin, M., & Vasudevan, P. N. (2018). Proofs
of work from worst-case assumptions. Lecture Notes in
Computer Science Advances in Cryptology – CRYPTO 2018, 789-
819. doi:10.1007/978-3-319-96884-1_26

Ball, M., Dachman-Soled, D., & Kulkarni, M. (2020). New techniques
for zero-knowledge: Leveraging inefficient provers to reduce
assumptions, interaction, and trust. Advances in Cryptology
– CRYPTO 2020 Lecture Notes in Computer Science, 674-703.
doi:10.1007/978-3-030-56877-1_24

Dalirrooyfard, M., Lincoln A., and Williams, V.V. (2020). New
techniques for proving fine-grained average-case hardness.
arXiv preprint arXiv:2008.06591

Degwekar, A., Vaikuntanathan, V., Vasudevan, P.N. (2016). Fine-
grained cryptography. Annual International Cryptology
Conference, 533-562. Springer, Berlin, Heidelberg, 2016. http://
dx.doi.org/10.1007/978-3-662-53015-3_19

Nisan, N., & Wigderson, A. (1994). Hardness vs randomness.
Journal of Computer and System Sciences, 49(2), 149-167.
doi:10.1016/s0022-0000(05)80043-1

Raghavendra, P. (2008). Optimal algorithms and inapproximability
results for every CSP? Proceedings of the Fortieth Annual
ACM Symposium on Theory of Computing - STOC 08, 245-254.
doi:10.1145/1374376.1374414

Williams, V. V. (2019). On some fine-grained questions in algorithms
and complexity. Proceedings of the International Congress of
Mathematicians (ICM 2018), 3. doi:10.1142/9789813272880_0188

9

VISIONS IN THEORETICAL COMPUTER SCIENCE

SUBLINEAR ALGORITHMS
The large amount of data available in certain settings sometimes
requires algorithms which do not have time to analyze all the
data, and/or the memory to remember all the data. For example,
the Large Hadron Collider generates one petabyte of data per
second! We thus seek algorithms whose running time and/
or memory usage are sublinear in the size of the data being
processed. Such considerations have led to much work on
algorithms which make just one pass over a stream of data
(“streaming algorithms”), compressed data structures or data
communication protocols with complexity far smaller than data
size (“sketching”), and sublinear time algorithms which only
look at a small fraction of data.

Computing on Massive Datasets, made
Easy by Sketching
Matching photos and how the fruit fly’s brain
processes — what’s in common?

Data is abundant: over one billion photos are uploaded daily
to just Google Photos. Analyzing such massive data can easily
overwhelm available resources. For a typical photo matching
task — grouping today’s photos by their contents — a naive
approach would perform more than quadrillions of photo
comparisons, a task out of reach for computers. Sketching
arose as a prominent TCS paradigm to perform such tasks by
summarizing (sketching) the data to store only the essential
information. This reduces the data size dramatically and makes
the computational task easier. How does one sketch and use
such sketches to enable efficient computation?

This question has inspired an exciting body of research in TCS
that has impacted diverse applications including databases,
machine learning, and signal processing (e.g., MRI). Sketching
has enabled a new class of low-memory procedures that can
process large amounts of real-time data, without storing all of
it. Techniques in sketching have stimulated the development
of a new field of randomized linear algebra that addresses
key problems in scientific computing, network analysis, and
machine learning. Strikingly, similar sketching methods have
been discovered in nature, for instance, in how fruit flies
process odors in their brain.

Sublinear Network Analysis
Studying big networks from small samples.

Networks are ubiquitous. They model diverse phenomena
including the transmission of information, social communication,
and molecular interactions. We often cannot see the entire
network; either it is too big, or too expensive to observe all
of it. Yet, an understanding of these networks is key to many
disciplines. Can we predict an epidemic spread by observing
only a few social interactions? Can we learn the operation
of spam networks by tracking only a few spammers? Can
we understand the resilience of the nation’s power grid by
studying a few power stations?

Many questions follow this theme: a large network of
importance, but the ability to only see a small portion of it. The
study of sublinear algorithms provides the language and tools
to rigorously describe and understand such problems. Given the
explosive growth in network data, there is a compelling need
to build a theory of sublinear network analysis that resonates
with the various networks in the real world.

10

VISIONS IN THEORETICAL COMPUTER SCIENCE

Understanding the Brain
Use ideas and methodologies from theory of
algorithms to develop an algorithmic view
of the brain.

Understanding how the brain performs complex tasks is
one of the biggest mysteries to elude scientists from many
different fields including biology, neuroscience and computer
science. When viewed from a computational standpoint, the
challenge is identifying the key algorithmic ingredients and
the right architecture to understand the brain conceptually;
this algorithmic viewpoint allows us to think in an abstract
way and disentangles the precise physiological details from
the algorithmic abilities. TCS can study different tasks such as
language understanding and propose algorithmic architectures
for solving such tasks while backing them up with arguments or
proofs that justify their efficacy. TCS can also help in modeling
these tasks — for example, by providing a generative model for
language.

There are several ideas in algorithms, in particular, data
structures for similarity search, sketching, storage and
indexing, and graph processing, all of which seem to be
essential components of almost any major learning task that
humans perform. For example, the way we access events from
memory is almost always never exact, but tolerant to noise;
thus we likely almost never store things in memory precisely,
but in some concise “sketched” format. We perhaps store a
graph of concepts or events based on how they are related or
correlated. With its current set of algorithmic tools TCS can help
us understand and propose how there may be special units in
a “conceptual view” of the brain and how these units interact
and work together to solve hard learning tasks. In addition to
helping us understand the brain, this may also help us develop
new ideas that may contribute to the field of algorithms and
computer science.

References
Cormode, G., & Yi, K. (2020). Small summaries for big data.

Cambridge University Press. doi:10.1017/9781108769938

Goldreich, O. (2017). Introduction to property testing. Cambridge
University Press. doi:10.1017/9781108135252

Mcgregor, A. (2014). Graph stream algorithms: A survey. ACM
SIGMOD Record, 43(1), 9-20. doi:10.1145/2627692.2627694

Papadimitriou, C., & Vempala, S. (2019). Random projection
in the brain and computation with assemblies of neurons.
Proceedings of the 10th Innovations in Theoretical Computer
Science Conference (ITCS), 57:1-57:19. doi:10.4230/LIPIcs.
ITCS.2019.55

Papadimitriou, C., Vempala, S., Mitropolsky, D., Collins, M., &
Maass, W. (2019). Brain computation by assemblies of neurons.
doi:10.1101/869156

Valiant, L. G. (2017). Capacity of neural networks for lifelong
learning of composable tasks. 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), 367-
378. doi:10.1109/focs.2017.41

Woodruff, D. (2014). Sketching as a tool for numerical linear
algebra. Foundations and Trends in Theoretical Computer
Science, 10(1-2), 1-157.

11

VISIONS IN THEORETICAL COMPUTER SCIENCE

CODING THEORY AND
COMMUNICATION
Coding theory is the study of codes for specific applications.
A code can be used for data compression, data transmission,
and data storage. The goal is to design efficient and reliable
codes to remove redundancy and to detect and correct errors.
Given the recent explosion in the amount of data created by
various applications, understanding how to design super-
efficient codes that deal with frequently occurring errors
on massive data sets is crucial. As inspiration for designing
codes, we can look at the miraculous ability of various naturally
occurring storage devices, such as our DNA. There are a number
of challenges we must face if we want to make DNA storage
a reality. Closely related to the ability to reliably store and
encode information is the ability for two agents to reliably
communicate and understand each other, which requires
encoding information in a way that makes recognition and
agreement between agents possible.

DNA for Data Storage
Storing the world’s data in a few grams of DNA.

The storage density and longevity of DNA is a miracle of nature.
Each cell in your body contains a tiny bit of DNA which encodes
all of you. Not only does a single gram of DNA contain 215 million
gigabytes of information, that information remains readable for
several hundred thousands of years.

DNA storage is a tremendous emerging technology to deal with
the exponentially increasing amounts of data we produce,
which roughly doubles every two years. However, making DNA
storage a reality requires a deep understanding of how to code
for and deal with insertion and deletion errors that frequently
occur when reading or writing DNA.

Coding Theory for Computing
Getting the most out of imperfect hardware.

Today, trillions of transistors, each being a few atoms wide,
are performing massive computations and the computational
demands continue to increase exponentially. Fundamental
laws of physics show that accommodating such a growth will
inevitably make the next-generation hardware prone to errors
on every level of computation.

Classical error correcting codes, that have fueled the information
revolution, are designed to protect data against errors. Scalable
computation on future faulty hardware crucially requires new
types of codes that can protect computation against errors.
Such codes also play a key role for building quantum computers.

A Theory of Explanations
What does it mean to explain “why” a system
made a decision? What does it mean to “accept”
an explanation?

Theoretical computer science has an excellent record of
formalizing social constructs, from privacy-preserving data
analysis (differential privacy) to protocols for convincing
a recipient of the veracity of a mathematical statement
(interactive proofs, zero-knowledge) or verifying that a message
did indeed originate with a claimed sender (digital signature).
As algorithms reach ever more deeply, and more consequently,
into our lives, there is a sense that their decisions should be
“explainable”, or “interpretable”. Regulation may even require
this (“There is no single, neat statutory provision labelled the
‘right to explanatio’ in Europe’s new General Data Protection
Regulation (GDPR). But nor is such a right illusory.” — Selbst and
Powles). What is the mathematical meaning of an explanation?
Is an explanation more valuable if it is accepted by a party

12

VISIONS IN THEORETICAL COMPUTER SCIENCE

with greater resources, such as domain knowledge and
computational ability, than if it is accepted by a party with
limited resources? Are explanations unique, or can ex post
justifications obscure the real reasons for a decision? Two
natural starting points to answering these questions are the
insights and tools in interactive proof systems and the work
on goal-oriented universal semantic communication. These
areas work to address the question of “how can two intelligent
entities (or agents), that have no prior knowledge of each other,
communicate to reach a state of understanding?”

References
Doshi-Velez, F., & Kim B. (2017). A roadmap for a rigorous science

of interpretability. arXiv preprint arXiv 1702.08608

Goldwasser, S., Micali, S., & Rackoff, C. (1989). The knowledge
complexity of interactive proof systems. SIAM Journal on
Computing, 18(1), 186-208. doi:10.1137/0218012

Goldreich, O., Juba, B., & Sudan, M. (2012). A theory of goal-
oriented communication. J. ACM 59(2): 8:1-8:65.

Lipton, Z. C. (2018). The mythos of model interpretability.
Communications of the ACM, 61(10), 36-43. doi:10.1145/3233231

Miller, T. (2017). Explanation in artificial intelligence: Insights
from the social sciences. arXiv preprint arXiv:1706.07269

Selbst, A. D., & Powles, J. (2017). Meaningful information and the
right to explanation. International Data Privacy Law, 7(4), 233-
242. doi:10.1093/idpl/ipx022

DISTRIBUTED COMPUTING
The quantity of data we, as a society, generate and use on a daily
basis is massive. It goes far beyond our capacity to store and
process on any one machine. Furthermore, the data is shared by
many users and accessed from many locations. A key research
achievement of distributed computing has been distributed
cloud storage systems that enable the big data technologies
that are generating so much excitement today. These systems
rely on fast algorithms for accessing shared data concurrently

while updates are being performed. In addition, they rely on
algorithms for maintaining consistent data efficiently over
large distances. These algorithms were developed, in part,
by unforeseen connections between biological distributed
mechanisms and other distributed scenarios occurring in
nature. Further understanding this connection will help expand
our current technologies. This is especially important given the
rapid growth of data, with scalability as a natural concern.

13

VISIONS IN THEORETICAL COMPUTER SCIENCE

Biological Distributed Algorithms
Using algorithms to understand nature, and
nature to inspire algorithms.

The rapidly expanding field of biological distributed algorithms
applies tools from the formal study of distributed computing
systems to better understand distributed behavior in nature,
and in turn uses these insights to inspire new ways to build
computing systems. Results in recent years have revealed the
surprising degree to which these two worlds are intertwined.
For example, techniques adapted from the theoretical study
of distributed systems helped uncover how ant colonies find
food and allocate work, explain the eerie efficiency with which
slime molds spread to locate food, identify simple strategies
with which fireflies might desynchronize their flashes, unlock
the capabilities of chemical reaction networks, and produce
progress on open questions concerning how neurons in the
human brain solve fundamental problems. Moving in the other
direction, the models and techniques developed to study
fireflies led to ideas used in breakthroughs in classical
distributed graph problems and the algorithmic treatment of
human neurons is unlocking new ideas for digital machine
learning. A challenge is to further strengthen and learn from
these connections, in order to mutually advance distributed
algorithms, as well as, our understanding of naturally occurring
distributed systems.

Scalable Network Algorithms
Computing on data too large to store in one place.

Data is exponentially growing and vastly exceeds what can be
computed on in a single machine. As a result, modern systems

consist of many tens of thousands of networked servers
running distributed algorithms. Delays, limited bandwidth,
and lack of parallelizability are bottlenecks that arise and
fundamentally new distributed algorithms are key to achieving
solving these efficiency problems. Novel models allow us to
develop algorithms for these massively parallel computations.

At the same time, new programming paradigms for large-scale
graph processing, like Google’s Pregel or Facebook’s Giraph,
implement interfaces precisely matching classical distributed
message-passing models. Message-passing algorithms developed
for these models now fuel the collection and analysis of network
data. Making these algorithms even more efficient by going
beyond worst-case guarantees remains an ongoing fundamental
challenge with wide-ranging promise for future systems.

References
Dasgupta, S., Stevens, C. F., & Navlakha, S. (2017). A neural

algorithm for a fundamental computing problem. Science,
358(6364), 793-796. doi:10.1101/180471

Fister, I., Fister, I., Yang, X., & Brest, J. (2013). A comprehensive
review of firefly algorithms. Swarm and Evolutionary
Computation, 13, 34-46. doi:10.1016/j.swevo.2013.06.001

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I.,
Leiser, N., & Czajkowski, G. (2010). Pregel. Proceedings of the
2010 International Conference on Management of Data -
SIGMOD 10, 135-146. doi:10.1145/1807167.1807184

14

VISIONS IN THEORETICAL COMPUTER SCIENCE

QUANTUM COMPUTING
The ability of quantum computers to outperform classical
computers is becoming a reality. How did quantum computers
first beat classical ones? It took heroic experimental feats,
ultracold temperatures, and a decade of work by theoretical
computer scientists. This leads to natural questions, such as
how to design even faster algorithms for quantum computers
and how to verify their computations. Moreover, the ideas from
quantum computing have been revolutionizing many areas of
physics — from explaining new states of matter to the study
of quantum gravity, wormholes, and Stephen Hawking’s black
hole information paradox. The next step is figuring out how
to best harness this power to make further impacts on other
scientific disciplines.

In the Fall of 2019, quantum computing achieved a historic
milestone when Google announced the achievement
of “quantum supremacy”: that is, the first-ever use of a
programmable quantum computer to perform some task
that’s believed to be much harder with any of the current
conventional computers. Google’s chip, called “Sycamore,”
used 53 superconducting qubits, cooled to a hundredth of a
degree above absolute zero, to generate random 53-bit strings,
in which the probabilities of some strings were enhanced by
constructive quantum interference. The task was admittedly
an artificial one — but Sycamore completed choreographing
nine quadrillion amplitudes in quantum superposition in
three minutes, while even conventional supercomputers with
hundreds of thousands of cores are conjectured to need at
least several days. This was first and foremost a remarkable
feat of engineering — but John Martinis, who led the Google
team responsible for it, has said that it wouldn’t have happened
had theoretical computer scientists not laid the groundwork.
This experiment represents the moment at which quantum

computing has finally entered the early “vacuum tube era,” with
actual experiments that will inform us about the possibility of
quantum speedups for practical problems. Once you’ve built 50
or 60 noisy, programmably-coupled qubits, what should you
have them do, to provide the most convincing possible speedup
over a classical computer? How should you check the quantum
computer’s results? How confident can you be that the task
in question really is classically hard? Since 2009, theoretical
computer science has made a decisive contribution to answering
all these questions, starting from abstract complexity theory
and proceeding all the way to experimentation.

Verifiable Quantum Computing
How can you check a quantum computer’s
calculation?

Quantum computers are believed to have extravagant
computational capabilities. While this means they have the
potential to solve extremely complex problems, this power also
makes it especially difficult to verify that they are behaving as
intended. Over the last 15 years, theoretical computer scientists
developed sophisticated methods to tackle the quantum
verification problem. These methods leverage decades of theory
research spanning complexity, cryptography, and physics.
A couple of recent achievements exemplify the resulting
significant theoretical and practical impact. The first example is
the US National Institute of Standards and Technology’s use of
these methods in their “Randomness Beacon” to provide a source
of certified quantum random numbers. Secondly, researchers
demonstrated it is possible to use cryptography to check the
calculations of a cloud quantum computer. And most recently,
in early 2020 there was a breakthrough in quantum verification
that solved the 46-year-old Connes’ Embedding Conjecture from
pure mathematics — spectacularly highlighting the far-reaching
impact of research in verifiable quantum computing.

15

VISIONS IN THEORETICAL COMPUTER SCIENCE

As quantum computing transitions from theory to practice in
the upcoming years, questions of quantum verifiability take on
increasing importance. For example, is there a way to verify the
calculations of intermediate-scale, noisy quantum computers
that are offered over the cloud? Can smaller quantum computers
be used to check the results of larger quantum computers? Is
there a tradeoff between privacy, efficiency, and verifiability of
quantum computations? What types of quantum cryptosystems
can be built using verification protocols? Theoretical computer
science will continue to play a crucial role in finding the answer
to these questions.

A Quantum Computing Lens on Physics:
From Exotic Matter to Black Holes
Over the last decade, ideas from quantum computing have been
revolutionizing many areas of physics — from explaining new
states of matter to the study of quantum gravity, wormholes,
and Stephen Hawking’s black hole information paradox.

One of the most important uses of quantum computers will be
for performing large-scale simulations of quantum physics and
quantum chemistry — for example, simulating large molecules
for drug discovery or simulating exotic states of matter for
materials design. In recent years, ideas from theoretical
computer science such as random walks and gradient descent
have led the way in developing faster and more practical
algorithms for quantum simulations and they are on the verge
of being run on real-world quantum hardware. However, many
fundamental challenges remain. For example, can quantum
computers developed in the near term be used to solve
simulation problems that are intractable for classical computers?
Can quantum computers aid us in designing exotic materials,
such as high-temperature superconductors? Such research
directions will require deep and sustained interdisciplinary
collaborations with the physical sciences.

Even before it was thought to use quantum computing as
a practical tool for materials science, ideas from quantum
computing have become indispensable to fundamental physics.
One of the central questions in this domain is how to combine
the two great theories of 20th century physics: gravity and
quantum mechanics. These ideas conflict most dramatically
when considering black holes. Quantum mechanics predict that
information is never created or destroyed, while Einstein’s theory
of gravity predicts that information thrown into a black hole is

lost forever. Resolving this paradox is an important step towards
establishing a theory of quantum gravity. Recently a promising
approach to this puzzle was developed based on quantum
error correcting codes. These codes were designed to protect
quantum data against noise by using redundancy by spreading
out information across many systems. This phenomenon turned
out to be an effective way to describe the distorted space-time
in the vicinity of a black hole. This revelation has led to the study
of black holes, wormholes, and other puzzles of quantum gravity
through the lens of quantum information — importing ideas from
computer science including error correction, computational
complexity and convex optimization.

Examples of real-world impact include:

1. Roughly half of DOE supercomputer time is used for quantum
simulation and quantum computers have the potential to
both reduce the cost of these simulations and extend their
scope.

2. Molecular simulations are already of significant use in
the pharmaceutical and chemical industries. Quantum
computers could make existing simulations cheaper and
enable new ones that would never have otherwise been
possible.

3. Improvements in chemistry and material science could mean
stronger and lighter materials for cars, airplanes and other
machines — better solar cells; improved superconductors;
better catalysts for industrial processes.

4. Recent advances in high-temperature superconductors
are responsible for a promising recent approach to fusion
power, but the underlying physics of these superconductors
remains mysterious since they are too difficult for our
existing computers to accurately model.

New Frontiers in Quantum Algorithms
Which problems can be solved exponentially
more quickly by quantum computers?

Factoring numbers — say, factoring 21 into 3 x 7 — is one of
the oldest problems in mathematics, and is the basis of most
encryption used on the internet today. Factoring small numbers
is relatively easy but when the numbers are thousands of digits
long, our existing computers would take longer than the age of
the universe to find the factors. However, two and a half decades
ago, Peter Shor showed that a quantum computer could factor
even large numbers quickly, setting off a scramble to find new

16

VISIONS IN THEORETICAL COMPUTER SCIENCE

codes to protect our communications and to understand what
features of quantum mechanics enable this remarkable ability.

Since then, researchers have shown that quantum computers
dramatically outperform their classical counterparts on a
variety of other problems as well, including simulating physics
and chemistry. In the future, we expect quantum computers to
find even more applications. We list three of the most important
potential applications below.

1. Machine learning and optimization have an enormous and
still-growing range of applications in industry and science.
Quantum computers can approach these problems in
qualitatively different ways but our understanding of the
power of these methods is still incomplete. Can quantum
computers speed up machine learning and optimization or
improve the quality of the answers?

2. Due to Shor’s factoring algorithm, NIST is currently sifting
through candidate cryptosystems to replace the factoring-
based cryptosystems in use today. How can we tell if these
“post-quantum cryptosystems” are actually secure against
quantum computers? Trying to design quantum algorithms
to break these systems is a crucial component of this area
of research.

3. For now, and the foreseeable future we will have access to
noisy intermediate-scale quantum (NISQ) computers, which
are small quantum computers with hundreds or thousands
of qubits rather than the many millions of qubits that a
full-scale quantum computer requires. Can these NISQ
machines give speed-ups, even though they are small?

References
Aaronson, S., & Arkhipov, A. (2013). The computational complexity

of linear optics. Theory of Computing, 143-252.

Arute, F., Arya, K., Babbush, R. et al. (2019). Quantum supremacy
using a programmable superconducting processor. Nature,
574, 505–510. https://doi.org/10.1038/s41586-019-1666-5

Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., &
Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671),
195-202. doi:10.1038/nature23474

Bremner, M. J., Jozsa, R., & Shepherd, D. J. (2010). Classical
simulation of commuting quantum computations implies
collapse of the polynomial hierarchy. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering
Sciences, 467(2126), 459-472. doi:10.1098/rspa.2010.0301

Hallgren, S. (2002). Polynomial-time quantum algorithms for
Pell’s equation and the principal ideal problem. Proceedings
of the Thirty-fourth Annual ACM Symposium on Theory of
Computing - STOC 02. doi:10.1145/509907.510001

Harrow, A. W., & Montanaro, A. (2017). Quantum computational
supremacy. Nature, 549(7671), 203-209. doi:10.1038/
nature23458

Jordan, S. P., & Liu, Y. (2018). Quantum Cryptanalysis: Shor, Grover,
and Beyond. IEEE Security & Privacy, 16(5), 14-21. doi:10.1109/
msp.2018.3761719

Reichardt, B. W., Unger, F., & Vazirani, U. (2013). Classical command
of quantum systems. Nature, 496(7446), 456-460. doi:10.1038/
nature12035

Shor, P. W. (1997). Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum computer.
SIAM Journal on Computing, 26(5), 1484-1509. doi:10.1137/
s0097539795293172

Susskind, L. (2016). Computational complexity and black hole
horizons. Fortschritte Der Physik, 64(1), 24-43. doi:10.1002/
prop.201500092

Vazirani, U., & Vidick, T. (2012). Certifiable quantum dice.
Proceedings of the 44th Symposium on Theory of Computing
- STOC 12. doi:10.1145/2213977.2213984

17

VISIONS IN THEORETICAL COMPUTER SCIENCE

Foundations of Data Science

DATA-DRIVEN ALGORITHM DESIGN
Data Science is a discipline focused on extracting knowledge
from data using tools from mathematics, statistics, and
computer science. Though the term was introduced more than 40
years ago, it only became widely used in the early to mid 2000s,
with a surge in popularity in the last decade accompanied by
several universities creating degree programs, institutes, and
schools devoted to the subject. Theoretical computer science
specifically, together with other fields, has played a major
role in contributing to the foundations of the discipline, such
as defining computational models, developing new efficient
algorithms for them, and providing a computational lens on
statistical questions.

Below we discuss avenues for further research in adaptive
data analysis and protecting data from overuse. This
includes using machine learning to augment algorithms while
maintaining provable guarantees, self-improving algorithms
that use feedback from data, and understanding special
properties of datasets that are relevant in practice and that
allow us to analyze algorithms beyond the worst case.

Tools for Replicable Science
Protecting the scientific value of data
from overuse.

Scientific and medical research is facing a “replication crisis”.
Many published results from these areas do not hold up when
tested on new data. In other words, the original research
identified a pattern that only occurred by chance in one dataset,
rather than discovering an underlying truth in all datasets. This
problem commonly arises when a dataset is over-used; as the

saying goes, “if you torture the data long enough, it will confess
to anything.”

How can we design systems for data analysis that allow
scientists to re-use the data across many studies and draw
valid conclusions? The greatest challenge is that the design
of later studies can depend on the results of earlier studies,
making the usual statistical tools incorrect. This leads to false
“discoveries” due to overconfidence in results’ significance. The
problem stems from the myriad of possible analyses one can
interpret from a study and the unaccounted influence of the
data on that choice. Tackling this problem is fundamental to
the long-term value of scientific research in every data-driven
field, as highlighted by the frequent difficulty of reproducing
scientific results.

One overly restrictive approach is to require researchers to pre-
register their experiments, preventing them from accessing the
dataset more than once. Over the past few years, a group of
breakthrough papers from the computer science community
addressed this question and showed that when the data is
accessed only by sufficiently “stable” algorithms, then we can
recalibrate the statistical tools to maintain accuracy despite
the use of the data in both choosing an analysis and carrying it
out. The first, and still best-known way to design such robust
algorithms comes surprisingly from a security condition called
“differential privacy”. This condition limits the extraneous
information that an analysis reveals about the data.

This work in computer science parallels efforts in statistics on
“selective inference” and “false discovery rate”. These similar
areas of interest tackle different aspects of the same larger
problem. Taken together, solutions to this problem hint at a

18

VISIONS IN THEORETICAL COMPUTER SCIENCE

tremendous opportunity; that of designing robust, reliable tools
that allow data scientists to explore data and draw valuable
insight from them, without mistaking characteristics of a
particular data source for a general trend. Currently, we have
access to more vastly varied data than ever before. Getting
real value from these resources requires an interdisciplinary
approach using ideas from statistics and areas of computer
science, such as machine learning, data mining, and even data
privacy, to design the tools we need.

Data Dependent Algorithms
One size does not fit all — tailoring algorithms
to data.

The traditional approach to algorithm design is to focus on worst
case scenarios, an excellent idea when mission critical tasks are
in question. However, often the outcome is suboptimal in other
scenarios. Imagine, for instance, preparing for a blizzard each
time you leave your house. An exciting new direction in TCS is
designing algorithms that perform better on “nice” data, the type
of data that arises the most in practice. This new perspective
aims at discovering unifying principles that can be used in a range
of applications. The challenge is twofold: (1) characterize natural
properties of data and define models that can be exploited for
better performance. In particular, we seek data characteristics
that persist across a broad range of computational tasks, (2)
design algorithms that can exploit conducive features of data
to improve their guarantees. Ultimately, the goal is to find data
dependent algorithms that are as efficient as possible for each
individual input.

This is a nascent line of research, but there are already some
concrete examples where such an endeavor demonstrates
promising success. There are two recent first steps: (1) the
amazing developments in neural networks and deep learning
are largely based on their power to represent massive
collections of complex data (such as human face images, or MRI
images) with very high accuracy. That leads us to believe we
can develop better algorithms assuming that their input data
is modeled in the same way. Bora et al. [1] recently developed
highly efficient image acquisition methods (an underlying task
for MRIs), for images modeled in this way, improving over the
state-of-the-art by up to one order of magnitude, (2) an exciting
new line of work by Kraska et al. [2] and by Mitzenmacher
[3] characterizes “typical” data as “learnable” data. The study

uses machine learning predictions about the input to improve
the performance of various data indexing schemes that are
widely used in software implementations, including standard
programming languages and database systems.

Algorithms from Algorithms
Desperately need an algorithm? Meta-algorithm
to the rescue!

An algorithm is a recipe to solve a problem. Designing algorithms
is typically done by humans since it requires creativity and
powers of formal reasoning. Given that computers are so
powerful now, one wonders if they can supplement humans
in the art and science of algorithm design. Can we create
an algorithm that, given a problem description, designs an
algorithm to solve it? Can we design an algorithm that self-
improves over time, learning from its mistakes? Can an algorithm
automatically find the optimal policy in decision making? Can
an algorithm discover the best algorithm to solve a problem?

We have long known that such goals are mathematically
impossible for arbitrary problems. But when considering real-
world problems recent studies show these goals may be within
reach. For a few problems, TCS researchers have shown how
to make algorithms handle feedback and use the feedback to
self-improve. The work lays out how to build algorithms that
use problem-solution exemplars to design policies. In light of
these early results, automated algorithm design is an area ripe
for significant progress.

References
Ailon, N., Chazelle, B., Comandur, S., & Liu, D. (2006). Self-

improving algorithms. Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithm - SODA
06, 261-270. doi:10.1145/1109557.1109587

Bora, A., Jalal, A., Price, E., & Dimakis, A.G. (2017). Compressed
sensing using generative models. ICML, 537-546.

Dütting, P., Feng, Z., Narasimhan, H., Parkes, D., & Ravindranath,
S. (2019). Optimal auctions through deep learning. ICML 2019,
1706-1715.

Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., & Roth,
A. (2017). Guilt-free data reuse. Communications of the ACM,
60(4), 86-93. doi:10.1145/3051088

19

VISIONS IN THEORETICAL COMPUTER SCIENCE

Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., & Roth, A. L.
(2015). Preserving Statistical Validity in Adaptive Data Analysis.
Proceedings of the Forty-seventh Annual ACM Symposium on
Theory of Computing. doi:10.1145/2746539.2746580

Gupta, R., & Roughgarden, T. (2020). Data-driven algorithm design.
Communications of the ACM, 63(6), 87-94. doi:10.1145/3394625

Kong, W., Liaw, C., Mehta, A., & Sivakumar, D. (2019). A new dog
learns old tricks: RL finds classic optimization algorithms.
ICLR 2019.

Kraska, T., Beutel, A., Chi, E. H., Dean, J., & Polyzotis, N. (2018).
The case for learned index structures. SIGMOD 2018, 489-504.
doi:10.1145/3183713.3196909

Mitzenmacher, M. (2018). A model for learned bloom filters and
optimizing by sandwiching. NIPS 2018, 464-473.

FOUNDATIONS OF MACHINE
LEARNING
It is undeniable that advances in theoretical computer science
have had great positive impact on modern day machine learning
as witnessed, for example, by the Kanellakis Award to Schapire for
his work on “boosting” weak classifiers and to Cortes and Vapnik
for their introduction of Support Vector Machines. The notion of
“Probably Approximately Correct” learning and other notions at
the core of computational learning theory were also developed by
the TCS community, starting with the work of Leslie Valiant, then
followed by many others.

Now with the central role machine learning plays in everyday
life, new challenges and applications have emerged for which
new foundations must be developed. For example, while
traditional learning theory promotes the mantra of Occam’s razor
(i.e., learning ‘simple’ concept classes should be ‘easier’), current
techniques such as deep learning reject this conventional
wisdom as they learn very complicated models with a large
number of parameters. The ubiquity of machine learning also
implies we need more robust learning algorithms that can
perform well in the face of a small number of malignant users

or corrupted training data, while simultaneously remaining
efficient enough to fit on mobile devices such as cell phones.
Machine learning systems should also maintain privacy and take
game-theoretic considerations into account as users (people)
interact with machine learning systems in strategic ways. All
these considerations leave open a wide avenue for theoreticians
to contribute to the development of the foundations of
machine learning.

Building Machine Learning Systems You
Can Trust
How can we make machine learning systems
provably safe and dependable?

The fact that we currently trust machine learning with almost
every aspect of our lives does not mean that our current
machine learning toolkit is completely trustworthy. Existing
machine learning systems can be easily manipulated to
make mistakes which can compromise a number of critical
applications. For example, ensuring that self-driving cars reliably
detect pedestrians and obstacles, and making recommendation
systems resilient to manipulations, are some of the challenges
we have yet to tackle.

20

VISIONS IN THEORETICAL COMPUTER SCIENCE

This quest critically requires developing a comprehensive
algorithmic theory that enables us to precisely frame potential
risks and develop principled approaches to mitigating them.
One of the first strands of such a theory has already delivered
a methodology for drawing correct conclusions from complex
datasets in the presence of a significant degree of false data,
leading to state-of-the-art empirical performance. A significant
generalization and refinement of this theory is necessary to
further improve practical performance. A major goal for TCS is
to develop principled methodologies to address the broad set
of challenges at the forefront of trustworthy machine learning.

Foundations of Deep Learning
A solid fundamental understanding of deep
learning would allow us to overcome its
drawbacks and broaden its applicability.

Despite the huge impact that deep learning has had in
practice, there are still many poorly understood aspects of this
technology that are very different from classical methodology.
Classical learning theory provides principled approaches for
using data to choose simple prediction rules, whereas deep
learning seems to achieve its outstanding performance through
entirely different mechanisms: it relies on complex prediction
rules, with an enormous number of adjustable parameters.
Classical theory cannot explain why these complex prediction
rules have outstanding performance in practice. In addition, it
is also important to develop good mathematical models that
explain data pertaining to language, images, and speech, and
how their properties affect the complexity of learning. Gaining
a theoretical understanding of these methods will be crucial for
overcoming their drawbacks (see, for instance, the nugget on
robustness), for developing algorithms that reduce the amount
of trial and error involved in their deployment, and for extending
them beyond the domains where they are currently applicable.

Algorithms for Discovering Causal
Structures in Data
Uncovering causal relationships can reshape
experimental design.

One of the most important problems in analyzing data is
detecting causal relationships among observable attributes.
Can we distinguish correlation from causation? A well-studied
abstraction for representing causality is a graphical model or
network where attributes are linked to indicate the influence of

one attribute over another. Some of the attributes may be latent
or hidden from the observer. Their behavior is revealed only
indirectly through the observed attributes. A major challenge
for TCS is reconstructing plausible networks from a small set of
observable behaviors.

For the fully observable case (no latent variables), efficient
algorithms for learning the underlying network have only
recently been obtained. These algorithms succeed even if the
training set is small relative to the number of attributes. If we
introduce a few latent variables, however, known solutions
are slow to detect complex relationships among the observed
attributes. The main goal is to break through this barrier
and find efficient algorithms for the case of latent variables.
Solutions will have a major impact in data mining and scientific
modeling.

Resource Aware Machine Learning
Develop programs that can run on small devices
and use as few resources as possible.

Computing devices have become smaller (e.g., smart-phones,
smart-watches) and more common in real-world environments
(e.g., adaptive thermostats, digital voice assistants). Machine
learning is an integral element and key driver of their success
that has enabled new exciting experiences. Unfortunately,
these devices have stringent resource constraints, including
reduced processing capabilities, decreased power supplies,
and bounded internet connections. Such constraints make
deploying the typical, resource-intensive toolkit of machine
learning impractical. Hence, it is challenging to create programs
that are fast and reliable in this setting.

The question is how to design machine learning algorithms
that can adhere to these resource constraints without
compromising the offered functionality. TCS researchers have
developed a mathematical abstraction of efficient programs
that unifies the way we analyze various constraints. This allows
us to better understand the fundamental tradeoffs among
these real-world resources. Moreover, such an abstraction
facilitates the development of machine learning methods that
are aware of, and optimally adapt to the available resources.
These advances have helped reduce the energy consumption
of standard computers by using a similar tradeoff analysis.

21

VISIONS IN THEORETICAL COMPUTER SCIENCE

Machine Learning for a Social and
Strategic World
Learning to design policies for people who
have a vested interest in the outcome.

When machine learning systems interact directly with people,
they affect the way people behave. In recent years, corporations
and government organizations have been steadily increasing
their use of machine learning techniques to automate business,
social, and economic decisions. For example, automated
resume screening services are trained using past hiring and job
performance data, and the calculation of insurance premiums
is based on collective personal data. These consequential
decisions shape people’s lives and behavior which, in turn,
shape the input to these critical decision-making systems.

Our goal is to design systems that can automatically uncover
insights from these complex interactions, while avoiding major
failures and harmful distortion of incentives and behavior.
These methods also need to operate in unpredictable and ever-
changing environments. It is therefore essential to develop
methods that guarantee the performance of these systems
even when the input changes. Adaptable machine learning
systems that are designed in this way can shed light on how
to improve and redesign existing social and economic policies
to ensure reliable performance of the systems as well as the
integrity of the societal forces they help to create. This is a vital
step towards a world where technology serves to make society
better, safe, and fair.

References
Balcan, M.-F., Blum, A., Haghtalab, N., Procaccia, A. D. (2015).

Commitment Without Regrets: Online Learning in Stackelberg
Security Games. Proceedings of the 16th ACM Conference on
Economics and Computation (EC). doi:10.1145/2764468.2764478

Diakonikolas, I., Kamath, G., Kane, D., Li, J., Moitra, A., Stewart,
A. (2019). Robust Estimators in High-Dimensions Without
the Computational Intractability. SIAM J. Comput. 48(2).
doi:10.1137/17M1126680

Diakonikolas, I., Kamath, G., Kane, D., Li, J., Steinhardt, J., Stewart,
A. (2019). Sever: A Robust Meta-Algorithm for Stochastic
Optimization. Proceedings of the 36th International
Conference on Machine Learning (ICML).

Hardt, M., Megiddo, N., Papadimitriou, C. H., Wootters, M.
(2016). Strategic Classification. Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science.
doi: 10.1145/2840728.2840730

Klivans, A., Meka, R. (2017). Learning Graphical Models Using
Multiplicative Weights. Proceedings of the 58th Annual IEEE
Symposium on Foundations of Computer Science (FOCS).
doi:10.1109/FOCS.2017.39

Madry, A., Makelov, A., Schmidt, L., Tsipra, D., Vladu, A. (2018).
Towards Deep Learning Models Resistant to Adversarial
Attacks. Proceedings of the 6th International Conference on
Learning Representations (ICLR).

Morgernstern, J., Roughgarden, T. (2015). On the Pseudo-
Dimension of Nearly Optimal Auctions. Proceedings of the
Annual Conference on Neural Information Processing
Systems (NIPS).

Raz, R. (2016). Fast Learning Requires Good Memory: A Time-
Space Lower Bound for Parity Learning. Proceedings of the
57th Annual IEEE Symposium on Foundations of Computer
Science (FOCS). doi:10.1109/FOCS.2016.36

Roth, A., Ullman, J. R., Wu, Z. S. (2016). Watch and learn: optimizing
from revealed preferences feedback. Proceedings of the
Annual ACM SIGACT Symposium on Theory of Computing
(STOC). doi:10.1145/2897518.2897579

22

VISIONS IN THEORETICAL COMPUTER SCIENCE

OPTIMIZATION

Linear System Solvers
The essence and engine of scalable computation.

Algorithm researchers strive to design better ways of solving
problems that are central to many disciplines; one such
fundamental problem is solving a set of linear equations in many
variables. Systems of linear equations arise throughout science
and engineering, from calculating stresses on truss structures, to
fluid simulations, or to modeling the behaviors of electromagnetic
waves. In many cases where linear systems don’t exactly model
the problem, they provide the steps that lead to the solutions. In
fact, linear system solvers are the silent workhorses of much of
large-scale computation today, including the search engines that
power the modern internet.

Despite its storied history spanning centuries, we still do not
know the fastest way to solve a system of equations. The
approaches we learned to solve systems of equations in high
school are too slow to solve the big problems we encounter
in practice, even with the use of supercomputers. Over the
last few decades, TCS researchers have developed entirely
new techniques for solving equations in many variables that
are much faster than classical methods. Many applications,
(e.g., better integrated circuits, more fine-grained analysis
of satellite images, and exploration of much larger social
networks) have been greatly accelerated by the development
of faster algorithms that solve the specific types of linear
equations that arise within them.

For general linear systems, as well as many important
subclasses, our best algorithms remain comparatively slow.
Faster methods for solving systems of linear equations
have led to, and will continue to lead to, accelerated drug

design, better social network analytics, and more accurate
recommendations of products for users. Advances in our
understanding of this one fundamental problem impact all the
areas in which it arises.

Algorithms Improve Medical Trials.
Making randomized control trials more
efficient with algorithmic discrepancy theory.

Randomized controlled trials (RCT) are the gold standard for
evaluating medical treatments, and are a major tool of inquiry
in science. Indeed, no novel treatment or drug can be approved
without being vetted via an RCT, which around $500M is spent
on annually.

The key to success in a randomized controlled trial is identifying
two groups (the treated group and the baseline/placebo
group) of test subjects whose profiles are sufficiently similar
in terms of gender, age, health, and every other potentially
relevant characteristic. The standard approach to achieving
such similarity is to randomly partition the population of
experimental subjects into the two groups. Such random
assignment does lead to the desired similarity, but turns out
to be suboptimal in terms of the most critical resource: the
number of test subjects needed to draw sufficiently reliable
conclusions. Indeed, by the 1970s, mathematicians working
in discrepancy theory had proved that it is possible to divide
people into two groups that are much more similar than the
groups one gets from random assignment. However, these
findings could not be used in practice because we did not
know a practical way of finding these remarkable divisions.

This finally changed in 2010 with a breakthrough that launched
the field of algorithmic discrepancy theory. Theoretical computer
scientists working in this field are developing methods that
enable us to efficiently compute divisions of people into groups

23

VISIONS IN THEORETICAL COMPUTER SCIENCE

whose makeups are shockingly similar. Through collaboration
with statisticians these advances will create RCTs that provide
us with more reliable conclusions while requiring fewer
experimental subjects. This methodology is likely to accelerate
the new drug and treatment development process, significantly
reduce the cost of scientific studies across social sciences
and medicine, and attain greater confidence in the identified
findings.

References
Bansal, N. (2012). Semidefinite optimization in discrepancy

theory. Mathematical Programming, 134(1), 5-22. doi:10.1007/
s10107-012-0546-7

Harshaw, C., Sävje, F., Spielman, D., & Zhang P. (2020). Balancing
covariates in randomized experiments using the Gram-
Schmidt Walk. arXiv preprint arXiv:1911.03071

Kyng, R., & Zhang, P. (2020). Hardness Results for Structured
Linear Systems. SIAM Journal on Computing, 49(4).
doi:10.1137/17m1161774

Spielman, D. A., & Teng, S. (2014). Nearly linear time algorithms
for preconditioning and solving symmetric, diagonally
dominant linear systems. SIAM Journal on Matrix Analysis
and Applications, 35(3), 835-885. doi:10.1137/090771430

24

VISIONS IN THEORETICAL COMPUTER SCIENCE

Cryptography

Cryptography has become the backbone of the Internet: it is
deployed everywhere and secures our online banking, shopping,
email, and other online activities. While traditionally cryptography
was used to secure our communication, modern cryptography
promises to secure even our computation. For example, Multi-
Party Computation and Fully Homomorphic Encryption enables
computation on encrypted data; and program obfuscation
promises to hide secrets in our software. In the past decade,
decentralized blockchains have gained traction, and there is a
growing appetite for such rich cryptographic primitives to be
deployed in the real world. The amazing developments from
the cryptography community over the past ten years will lead
to transformative new applications, in particular, it will allow
computing and sharing of, and machine learning over, sensitive
data while protecting our privacy.

Can we Compute on Encrypted Data?
Can you search the web without revealing
your search query?

Can you run a python program without giving your input to
the program? Can you contribute your data to a medical study
while keeping the data private? Can we perform contact tracing
and epidemic analysis without leaking users’ private location
traces?

Classical cryptographic systems are all-or-nothing; either you
know the private key in which case you can see all of the data,
or you don’t, in which case you can’t see any of the data and
you cannot do much meaningful computation on the ciphertext.
Fully-homomorphic encryption (FHE) enables running an
arbitrary program on data while it remains encrypted, and
provides a means to solve all these questions. Revolutionary

developments in the last decade gave us fully homomorphic
encryption schemes, harnessing beautiful mathematics from
lattice-based cryptography. In fact, the rapid pace of research
in the last decade accomplished great strides in making these
tools practical. Several grand challenges remain, including
improving the efficiency to be comparable to conventional
cryptosystems such as RSA.

Concurrently, new threats to the security of our encryption
systems continue to emerge. First, hardware attacks such as
Spectre and Meltdown, aggravated by the remote storage of
data, force us to harden our encryption systems against ever
more powerful attacks. Secondly, the possibility of scalable
quantum computers will render conventional encryption
schemes, such as RSA, insecure. Can we construct super-
encryption schemes, ones that not only allow us to compute on
encrypted data, but also provide security against these more
powerful attacks?

Can we Hide Secrets in Software?
Building obfuscation schemes that are
provably secure and practically efficient.

Twelve years ago, the game-changing challenge of program
obfuscation was suggested at this venue, we quote: “Progress
in research on secure program obfuscation would lead to
progress on important and long-standing open questions in
cryptography with numerous applications.”

The last seven years saw major breakthroughs, including the
first feasibility result on program obfuscation. This presents
the tantalizing possibility of masking not just data, but entire
programs that can be used without anyone figuring out how

25

VISIONS IN THEORETICAL COMPUTER SCIENCE

they work, no matter the attacker’s method. For the first time,
this gives us hope that we can protect algorithms that are sent
out into cyberspace.

Program obfuscation has turned out to be a swiss army knife
for cryptography, presenting the possibility of building all
sorts of dream cryptosystems. It enables encryption schemes
with strong forms of access control, allowing a third party to
learn functions of encrypted data, but not all of it. It allows
us to securely patch and update software without revealing
vulnerabilities, to prevent copyright infringement, to replace
tamper-proof hardware — like Intel SGX — with software, and to
secure programs for electronic commerce or national security
applications that may be executed on insecure computers in
the future.

Despite this exciting progress, existing obfuscators should
primarily be viewed as feasibility results; bringing us closer to
a dream that was previously believed to be unattainable. A lot
more progress is needed before secure obfuscation becomes a
practical reality. Moving forward, there are two grand challenges
for obfuscation:

1. Can we base the hardness of obfuscation on widely
studied cryptographic assumptions? For example,
building obfuscators that are provably unbreakable
unless someone manages to factor large integers.

2. How fast can obfuscators run? Existing algorithms will
need to be made several orders of magnitude faster
before they can be deployed in practice.

Cryptography as Cartography: Mapping
the Landscape of Computational Hardness
What can a computer not do? Can we use that
for cryptography?

The central paradigm in cryptography is to use computational
hardness of central problems in computer science to
construct secure systems. This puts us in a unique “win-win”
situation; breaking the security of these systems would lead

to interesting advances in other areas. For example, we can
design encryption schemes that would lead to a breakthrough
in number theory, the theory of error-correcting codes, or highly
unexpected machine learning capabilities in the instance of a
security violation.

Indeed, such encryption primitives are used in most of our
interactions every day on the Internet. This being the case,
developing a thorough understanding of computational
hardness, both the kind we use today and that which we might
be able to use tomorrow, is essential to make sure that our
online banking systems and electronic commerce would still be
secure even with new breakthroughs in machine learning and
quantum computing.

In addition, this paradigm also lets us use cryptography to
explain the difficulty of certain tasks in other areas of computer
science. On the flip side, we can use cryptography to design
concrete computational challenges and benchmarks that would
serve as catalysts for progress in other areas such as quantum
computing, machine learning algorithms, and verifying the
correctness of programs. A prominent historical example is
Shor’s algorithm, which was motivated by the challenge of
breaking the RSA encryption scheme and resulted in a huge
interest in quantum computing.

References
Barak, B. (2016). Hopes, fears, and software obfuscation.

Communications of the ACM, 59(3), 88-96. doi:10.1145/2757276

Gentry, C. (2010). Computing arbitrary functions of
encrypted data. Communications of the ACM, 53(3), 97-105.
doi:10.1145/1666420.1666444

Vaikuntanathan, V. (2011). Computing blindfolded: New
developments in fully homomorphic encryption. 2011 IEEE
52nd Annual Symposium on Foundations of Computer
Science, 5-16. doi:10.1109/focs.2011.98

Horváth, M. & Buttyán, L. (2015). The birth of cryptographic
obfuscation — A survey. Cryptology ePrint Archive, Report
2015/412.

26

VISIONS IN THEORETICAL COMPUTER SCIENCE

A FIRM FOUNDATION FOR PRIVACY
GROUNDED IN TCS
Reliable methods for balancing privacy and
utility, replacing ad hoc approaches.

How can we reap the benefits of studying collections of
large datasets without revealing sensitive information about
the individuals to whom the data pertains to? This question
is extremely challenging, as attackers have learned to
evade current ad hoc defenses in increasingly devastating
ways to extract sensitive data from seemingly anonymous
information. Differential privacy came about in 2006 as a
rigorous mathematical framework to identify what it would
take for an algorithm to ensure the privacy of individuals
against *any* attacker.

Over time, the TCS community has developed a strong
understanding of how to reason about privacy and how to
measure the accumulation of privacy risk as data is analyzed.
We can now design very accurate algorithms that guarantee
privacy for nearly every task from simple statistics to advanced
ML techniques. Many players in industry and government are
adopting this approach. The US Census Bureau is using these
methods for the 2020 decennial census, and large companies
such as Apple and Google are applying these techniques to
ensure user privacy.

Publishing Private Data for the
Public Good
How can we make data accessible for research
and policymaking without compromising privacy?

Large high-dimensional datasets containing personal information
are commonly analyzed for multiple reasons. For example, the US
Census Bureau’s American Community Survey collects detailed
information from a sample of American households. The results
are used for major decisions about funding allocation and
community planning.

In order to provide the widest accessibility to such data, we
want to be able to publicly release a synthetic dataset — that is,
an entirely new dataset that matches the statistical properties
of the original data without corresponding to the real data of
any individual. This is the approach used for the 2020 Census.
Researchers have made great strides in developing synthetic
data, but many challenges were also discovered.

It is impossible to generate a synthetic dataset that perfectly
matches the real data. Decisions must be made about what
kinds of analyses to prioritize and to what accuracy. From there
stems the questions: Who gets to make these decisions? What
technical tools are needed to ensure these decisions are aligned
with society’s goals? How can these decisions be communicated
transparently? And how do we incorporate outside data sources
and account for potential statistical biases?

TCS for other domains

27

VISIONS IN THEORETICAL COMPUTER SCIENCE

Resolving these challenges would enable deeper analyses
of private data than what is currently possible, as well as,
reduce the disparate impact of privacy technologies on small
subpopulations. In addition, solutions would catalyze advances
in social sciences, genomics research, epidemiological
modeling, and any other discipline where individual privacy is
a major concern.

The Privacy of AI
How to build large-scale AI models while
preserving your privacy.

Many domains increasingly rely on large and complex AI models,
but training these models requires massive datasets. In many
cases, these required datasets contain personal and sensitive
information: people’s textual data, images and video content
containing people and even health or financial data. Current AI
models are known to memorize some of the training data and
reproduce the information when prompted. The risk of these
models leaking sensitive personal information from the training
data is present and real. Moreover, the creation of the training
datasets in itself creates a privacy risk, often making access
to these valuable datasets restricted. For example, medical
records distributed across organizations are currently silo-ed
for privacy reasons, thus limiting the benefits derived from the
integration of AI in these domains. Is it possible to mitigate
privacy risks while realizing the full potential of AI technologies?

The answer to reducing these risks is privacy preserving
technologies, such as differentially private and cryptographic
tools, would allow the training algorithms to run without
collecting data centrally and therefore guaranteeing that
sensitive details cannot be extracted from the final model.
Before implementing these tools, a couple of questions need

to be answered: Can we develop algorithms that can be quickly
trained to work on complex models and large distributed
datasets? When is a loss in accuracy unavoidable to preserve
privacy? And how will the use of these methods affect small
subpopulations?

Successful resolutions to these questions would give us access
to larger datasets to train AI models in a safe way that ensures
privacy.

References
Dwork C., & Roth, A. (2014). The algorithmic foundations of

differential privacy. Foundations and Trends in Theoretical
Computer Science, 9(3-4), 211-407.

Dwork, C., & Pottenger, R. (2013). Toward practicing privacy.
Journal of the American Medical Informatics Association,
20(1), 102-108. doi:10.1136/amiajnl-2012-001047

Dwork, C. (2011). A firm foundation for private data
analysis. Communications of the ACM, 54(1), 86-95.
doi:10.1145/1866739.1866758

Dwork, C., & Smith, A. (2010). Differential privacy for statistics:
What we know and what we want to learn. Journal of Privacy
and Confidentiality, 1(2). doi:10.29012/jpc.v1i2.570

Dwork, C., & Ullman, J. (2018). The Fienberg Problem: How
to allow human interactive data analysis in the age of
differential privacy. Journal of Privacy and Confidentiality,
8(1). doi:10.29012/jpc.687

Dwork, C., Smith, A., Steinke, T., & Ullman, J. (2017). Exposed!
A survey of attacks on private data. Annual Review of
Statistics and Its Application, 4(1), 61-84. doi:10.1146/annurev-
statistics-060116-054123

28

VISIONS IN THEORETICAL COMPUTER SCIENCE

TCS FOR SOCIAL GOOD
Algorithms are increasingly informing decisions deeply
intertwined in our lives, from news article recommendations to
criminal sentencing decisions and healthcare diagnostics. This
progress, however, raises (and is impeded by) a host of concerns
regarding the societal impact of computation. A prominent
concern is that these algorithms need to be fair. Unfortunately,
the hope that automated decision-making might be free of social
biases is dashed due to the data with which the algorithms are
trained and the choices made during their construction; left to
their own devices, algorithms will propagate, or even amplify,
existing biases in the data, the programmers, and the decisions
of which features to incorporate and which measurements
of “fitness” to apply. Addressing wrongful discrimination by
algorithms is not only mandated by law and by ethics, but
is essential to maintaining the public trust in the current
computer-driven revolution.

Over the last decade, CS theory has revolutionized the landscape
beliefs associated with algorithmic fairness. Many former
notions of fairness mandate that the “average treatment” of a
protected set of individuals (defined for example by gender or
ethnicity) should be similar to that of the general population.
For example, in the university admissions process statistical
parity means that the fraction of accepted candidates from a
protected group will be very close to the fraction of candidates
from the general population. TCS researchers have shown in
a sequence of studies that group fairness is easy to abuse;
that natural group fairness definitions cannot be satisfied
simultaneously in non-trivial scenarios; and that insisting on
these definitions may even cause additional unexpected harm.
While a single notion of fairness is impossible, theoreticians
have introduced completely new families of definitions which
allow for a more refined treatment of fairness. These notions

can govern how individuals, or at least a multitude of groups,
are treated. The new notions have already had substantial
intellectual and practical impact.

The Theory of Algorithmic Fairness
Algorithms make decisions about us. We want
these decisions to be fair and just.

Society-facing automated decision systems have to perform
a delicate balancing act. These systems need to be “good”
at making decisions while simultaneously being fair and
preventing discrimination against protected population
subgroups. The theoretical computer science community has
investigated these problems for nearly a decade.

Fairness is contextual; who should be treated similarly to whom
depends on the task. One approach to algorithmic fairness
separates the specification of fairness from the task of ensuring
fairness is achieved. This places enormous burden on the
specification, and allows a wide range of mathematical tools for
achieving the task. The field has recently seen tantalizing socio-
technical approaches to the specification problem.

By capturing unfairness, instead of fairness, the field can make
progress as breaches in fairness are addressed. Here, however,
theoretical investigation reveals an interesting phenomenon;
several different types of statistical unfairness cannot be
ruled out simultaneously. These kinds of mathematical limits
focus research on articulating ambitious but achievable goals.
This active area of research has produced gems with deep
connections to the established fields of forecasting and regret
minimization. Other investigations are more structural: Are
systems composed of fair parts fair as a whole? Can properties
of fairness be generalized? And is it better or worse, from a
fairness perspective, to censor sensitive attributes in a dataset?

29

VISIONS IN THEORETICAL COMPUTER SCIENCE

Many societal biases are systemic; as a result the ways
in which individuals are presented to an algorithm can be
problematic. The selection of variables, outcome proxies, and
objective functions, do not treat similar individuals the same.
The study of how to evaluate the risks, guarantees, and trade-
offs associated with notions of fairness in algorithms is just
beginning.

Fair Resource Allocation
In a truly ethical society, how to be fair to
all is the question.

Whether it is distributing tax money, network access, school
seats, satellites, defense resources or air traffic management,
mechanisms that enable participants to come to a mutually
agreeable allocation of resources are essential to the functionality
of society. Fair division of resources has become a major field
of study in computer science, mathematics, economics and
political science. The domain seeks to answer whether provably
fair outcomes exist in a wide variety of problems and how we
can compute them. Computer science researchers have led the
charge in making fair division possible at scale in environments
with multitudes of participants, thereby bringing fair division to
the masses. Important challenges in regards to even stronger
notions of fairness still lie ahead: How can we divide goods
that cannot be evenly divided in a manner that ensures no
individual envies another’s allocation? How can we define and
impose fair division when the participants may lie about their
preferences? And how can centralized allocation tools facilitate
human interactions in a way that leads to fairer outcomes?
The theory of fair resource distribution can provide allocations
that are guaranteed to be fair in many applications of societal
importance. For example, these methods are currently used for
kidney exchanges, school seat assignments, dividing donations
among food banks, inheritance division, divorce settlements,
and splitting jointly purchased goods between friends.

Auditing Algorithms
Telling fact from fiction in a world
dominated by algorithms.

Algorithms unleashed on a growing body of data are able
to produce claims at an ever-increasing rate. For example, a
machine learning algorithm applied to a medical record data
set will be able to produce billions of credible-looking medical

hypotheses. How can the scientific community independently
verify these hypotheses?

We can describe how we want decision making systems to be
fair, or nondiscriminatory, or avoid being biased. We can even
design algorithms that satisfy all of these properties. But how
do we make sure that systems we cannot directly inspect
are trustworthy? We must have a way to audit systems that
provide guarantees or certificates of trustworthiness.

To do this we have to address two challenges. First, the power
asymmetry: the systems we want to audit are usually black
boxes under the control of an untrusted third party with limited
access for auditors. Second, the nature of the question to be
asked: rather than trying to check if the system gives us correct
answers, we want to find out whether the system is giving us
fair or unbiased answers.

TCS is well placed to address the question of power: in areas
ranging from interactive proofs to private information retrieval
and the very architecture of distributed, private and secure
computation, the framework of powerful demonstrators and
weak verifiers show that we can solve surprisingly hard
problems without full access to the system we are querying.
The harder challenge lies in the distributional nature of the
properties we wish to verify, whether it be a certificate of
individual fairness, demographic parity, or other criteria that
we wish to test for.

Diving deeper into this area of research will allow us to draw
a better picture of what is possible and what is not. Such a
direction will (and must) inform the larger legal and regulatory
frameworks that are put in place for validating algorithmic
decision systems.

Algorithmic Foundations of Participatory
Decision Making
Democracy needs more participation.
Participation needs better algorithms.

Although the world today is very different than it was a few
decades ago, the practice of democracy hasn’t fundamentally
changed in centuries. To revitalize democracy, it is commonly
believed that a higher degree of citizen participation is needed.

30

VISIONS IN THEORETICAL COMPUTER SCIENCE

Theoretical computer science continues to play a major role in
facilitating participation in a way that is representative and
fair. In particular, local and national governments around the
world are already eliciting and aggregating citizen preferences
in order to select public projects to fund. TCS approaches seek
to answer whether it is possible to compute outcomes that are
guaranteed to be satisfactory to every possible group.

Similarly, randomly-selected citizens’ panels that debate policy
questions became commonplace in recent years. Issues of
self-selection of volunteers and lack of fair representation on
these panels can skew results and create bias threatening
these democractic systems. The questions we must ask are:
How can these panels be constructed in a way that is fair to
volunteers, representative of the population, and transparent?
And how can algorithms help panelists deliberate and reach
a consensus? Theoretical computer science has the ability to
ensure the fairness and representation of these systems and
shape the future of democracy.

References
Abebe, R., & Goldner, K. (2018). Mechanism design for social good.

AI Matters, 4(3), 27-34. doi:10.1145/3284751.3284761

Ashlagi, I., Fischer, F., Kash, I. A., & Procaccia, A. D. (2015). Mix
and match: A strategyproof mechanism for multi-hospital
kidney exchange. Games and Economic Behavior, 91, 284-296.
doi:10.1016/j.geb.2013.05.008

Benadè, G., Gölz, P., & Procaccia, A. D. (2011). No stratification
without representation. Proceedings of the 20th ACM
Conference on Economics and Computation, 281–314.

Chouldechova, A. (2017). Fair prediction with disparate impact: A
study of bias in recidivism prediction instruments. Big Data,
5(2), 153-163. doi:10.1089/big.2016.0047

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012).
Fairness through awareness. Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference on
- ITCS 12, 214-226. doi:10.1145/2090236.2090255

Dwork, C., Ilvento, C., Rothblum, G. N., & Sur, P. (2020). Abstracting
fairness: oracles, metrics, and interpretability. 1st Symposium
on Foundations of Responsible Computing, 2020.

Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., &
Venkatasubramanian, S. (2015). Certifying and removing
disparate impact. Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining. doi:10.1145/2783258.2783311

Goel, A., Krishnaswamy, A. K., Sakshuwong, S., & Aitamurto, T.
(2019). Knapsack voting for participatory budgeting. ACM
Transactions on Economics and Computation, 7(2), 1-27.
doi:10.1145/3340230

Hardt, M., Price, E., & Srebro, N. (2016). Equality of opportunity
in supervised learning. Advances in Neural Information
Processing Systems.

Hébert-Johnson, Ú., Kim, M.P., Reingold, O., & Rothblum, G.N.
(2018). Multicalibration: Calibration for the (computationally-
identifiable) masses. ICML 2018, 1944-1953.

Kleinberg, J., Mullainathan, S., & Raghavan, M. (2017). Inherent
trade-offs in the fair determination of risk scores. ITCS, 2017.

Menon, A.K. & Williamson, R.C. (2018). The cost of fairness in
binary classification. Proceedings of the 1st Conference on
Fairness, Accountability and Transparency, in PMLR 81, 107-118.

Moulin, H. (2004). Fair division and collective welfare. MIT Press.

Peters, D., & Skowron, P. (2020). Proportionality and the limits
of welfarism. Proceedings of the 21st ACM Conference on
Economics and Computation. doi:10.1145/3391403.3399465

Underwood, B. D. (1979). Law and the crystal ball: Predicting
behavior with statistical inference and individualized
judgment. The Yale Law Journal, 88(7), 1408-1448.
doi:10.2307/795726

31

VISIONS IN THEORETICAL COMPUTER SCIENCE

AN ALGORITHMIC APPROACH TO
ECONOMIC SYSTEMS
Algorithms and automated decision making have gradually
permeated all levels of the U.S. economy. On the one hand,
consider the daily decisions we make as consumers: How do
you get to your next appointment – hail a taxi, share a ride, or
rent a bike? What coffee machine should you buy? When you
travel, where do you stay, where do you eat, and what do you
do for fun? Increasingly, each of these decisions is made with
both explicit and implicit direction from platform marketplaces
run by firms such as Uber, Amazon, LinkedIn, Google, Facebook,
and others. Individually, many of these marketplaces are large;
in aggregate, their impact on the economy and on the shape of
modern society is immense. On the other hand, institutions at
the topmost levels of the economy have grappled with growing
complexities by resorting to algorithmic approaches — from
algorithmic trading in financial markets to large-scale Federal
Communications Commission (FCC) spectrum auctions to barter
markets for organ donation.

Traditionally, economic fields such as auction theory, contract
theory, market design, and information design provided the
principles that guide the configuration of economic markets
and institutions. These foundations were recognized with
Nobel Prizes in 2007 and 2020 for auction theory; in 2012 for
market design; and in 2016 for contract theory. Yet, the theories
they propose do not always scale well to the combinatorial
complexities presented by modern markets, severely limiting
their continued practical influence. TCS has stepped into this
space to provide new economic theories built on a sound
computational foundation.

Platform Markets & Auctions at
Global Scale
Who gets what and for how much — on
the Internet?

Auctions are not new, but fielding billions of interdependent
auctions — run and monitored automatically — in complex
environments is. TCS provides direct guidance on eliciting
bids from participants along with pricing and allocating items.
Online advertising, which is the main source of revenue for
the big tech companies such as Google and Facebook, traces
its lineage back to classical problems studied in TCS such as
the online bipartite matching problem. Dynamic markets that
match riders with drivers or bikes — that appear, disappear, and
re-appear — at “NYC-scale” are guided toward efficient global
solutions, all while making local decisions within seconds. In
addition, applications such as Youtube and Spotify rely on core
techniques in combinatorial optimization and learning theory
to facilitate the fair representation of content creators in a
diverse slate recommended to users. Indeed, TCS has even
touched markets that operate without money, helping to build
out barter markets for organs in the US and worldwide as well
as matching markets for blood donation and charitable giving.

In the past decade, the TCS community made simplifying
assumptions that allowed the field to make analytic progress,
using these strong-but-simple models to help guide policy. The
next step is understanding how to relax these assumptions to
better capture the full reality of complex, decentralized, online
marketplaces with strategic participants. What algorithms lead
to good equilibria when all the participants are independently
solving an online allocation problem for themselves? How does

32

VISIONS IN THEORETICAL COMPUTER SCIENCE

competition between different multi-sided platforms impact
global social welfare, in both the short- and long-term? As
platform markets continue to drive large parts of the online
economy, these complexities will have growing implications for
our society. Our push for the coming decade will be to provide
a strong theoretical understanding of the dynamics of this
complex environment.

Optimization Drives the Sharing Economy
Everyone now runs their own bus company.

While using a shared bike system to get around a city, we usually
don’t think about the planning and operational decisions that
make the system run smoothly. For example, how do we ensure
that there are enough bikes at each station for people to borrow
and enough free slots so that people can also drop the bikes
back off? The enormous number of users, and the uncertainty
about when and where they want to pick up and drop off bikes,
makes this an optimization problem of unprecedented scale.
Similar challenges arise in delivering meals-on-wheels to needy
families, or in matching ride-sharing cars to users: all these
are systems that solve problems in real time, on-the-fly, and at
huge scales.

These examples show how the sharing (digital) economy has
given rise to challenging problems in resource management,
logistics, and customer service. For many years TCS researchers
have developed state-of-the-art methods to solve such
problems, contributing to numerous success stories such as
the AdWords systems. However, the diversity of these problems
and the greater uncertainty means we need new formulations
to model their practical difficulties. Research on the foundations
of optimization algorithms will guide this work in two key ways.
Firstly, it will provide abstractions to capture fundamental
questions that span a range of applications within a common
setting. Secondly, it will help answer these algorithmic
questions by generating tools that guide the design, planning,
and operational decisions. Both the underlying abstractions and
the algorithmic tools can be used for other applications, some
that are currently known, and many that are yet unanticipated.

Economic Foundations for an
Algorithmic World
Computer algorithms are evolving rapidly:
Can economic institutions keep up?

As computing becomes increasingly commodified, economic
institutions are becoming increasingly algorithmic. Algorithmic
trading is pervasive in financial markets. More and more people
are finding work in a diverse range of fields through algorithmic
platforms such as AirBnB, Uber/Lyft, and Mechanical Turk.
Even within traditional firms, algorithmic hiring is a growing
trend. Importantly, participants’ behavior in these institutions
is traditionally regulated (e.g., discriminatory hiring practices
are illegal) in order to benefit society. When the participants
are algorithms, however, regulation becomes problematic,
or perhaps even intractable. One key example is algorithmic
exploitation of arbitrage opportunities. Already, difficult-to-
regulate algorithmic traders extract rents from financial markets
by exploiting arbitrage opportunities before humans can even
detect their existence. Imagine further algorithmic exploitation
of tax loopholes, or algorithmic market manipulation in ride-
sharing platforms — which are not far on the horizon.

On Page 29 we discussed approaches for auditing algorithms.
Here we discuss an alternative approach that can supplement
or supplant auditing — designing institutions to be resilient
to or even benefit from participants’ self-interested behavior.
This approach fundamentally rethinks the design of economic
institutions in two ways: first, modern markets should take
advantage of (rather than collapse under the weight of) new
state-of-the-art algorithms with heuristic, but not guaranteed,
performance. Second, market regulation must have built-in
robustness against algorithmic sophistication “growing with
the state-of-the-art” built into them — otherwise, algorithmically
sophisticated participants will be able to exploit other
participants and the institution without providing any value in
return.

These properties can be formalized through the TCS concept
of Price of Anarchy, which measures the impact of strategic

33

VISIONS IN THEORETICAL COMPUTER SCIENCE

behavior on society’s welfare within a system. Since its
inception two decades ago, the Price of Anarchy has been a
successful lens to study Internet routing protocols. Over the
past decade, the paradigm has invaded other domains, such as
auction design. The goal for the next decade is to influence an
increasingly broader range of fields, and provide a rich theory
to guide the design of economic institutions for strategic
algorithmic participants.

References
Leyton-Brown, K., Milgrom, P., & Segal, I. (2017). Economics

and computer science of a radio spectrum reallocation.
Proceedings of the National Academy of Sciences, 114(28),
7202-7209. doi:10.1073/pnas.1701997114

Roughgarden, T. (2020). Complexity theory, game theory,
and economics: The Barbados Lectures. Foundations and
Trends in Theoretical Computer Science, 14(3-4), 222-407.
doi:10.1561/9781680836554

Roughgarden, T., Syrgkanis, V., & Tardos, E. (2017). The price
of anarchy in auctions. Journal of Artificial Intelligence
Research,59, 59-101. doi:10.1613/jair.5272

Sutton, M. (2019, August 27). AI and incentives see cyclists do the
legwork for bike share firms. Cycling Industry News. Retrieved
from https://cyclingindustry.news/bike-share/

Varian, H.R. (2008). Designing the perfect auction. Commun. ACM
51(8), 9–11.

34

VISIONS IN THEORETICAL COMPUTER SCIENCE

Workshop Participants
Name Affiliation

Scott Aaronson University of Texas at Austin

Alex Andoni Columbia University

Peter Bartlett University of California Berkeley

Paul Beame University of Washington Seattle

Mark Braverman Princeton University

Mark Bun Boston University

Mahdi Cheraghchi University of Michigan Ann Arbor

Nikhil Devanur Amazon

Ilias Diakonikolas University of Wisconsin Madison

John Dickerson University of Maryland

Cynthia Dwork Harvard University

Anna Gilbert Yale University

Seth Gilbert National University of Singapore

Vipul Goyal Carnegie Mellon University

Anupam Gupta Carnegie Mellon University

Tom Gur University of Warwick

Bernhard Haeupler Carnegie Mellon University

Nika Haghtalab Cornell University

Aram Harrow Massachusetts Institute of Technology

Russell Impagliazzo University of California San Diego

Piotr Indyk Massachusetts Institute of Technology

Yuval Ishai Technion - Israel Institute of Technology

Dakshita Khurana University of Illinois Urbana-Champaign

Jonathan Kleinberg Cornell University

Adam Klivans University of Texas Austin

Gillat Kol Princeton University

Ravi Kumar Google

Shachar Lovett University of California San Diego

Nancy Lynch Massachusetts Institute of Technology

Aleksander Madry Massachusetts Institute of Technology

Urmila Mahadev California Institute of Technology

35

VISIONS IN THEORETICAL COMPUTER SCIENCE

Name Affiliation

Ruta Mehta University of Illinois Urbana Champaign

Lorenzo Orecchia University of Chicago

Rina Panigrahy Google

Richard Peng Georgia Institute of Technology

Seth Pettie University of Michigan

Toniann Pitassi University of Toronto

Yuval Rabani Hebrew University of Jerusalem

Cyrus Rashtchian University of California San Diego

Ilya Razenshteyn Microsoft Research Redmond

Omer Reingold Stanford University

Guy Rothblum Weizmann Institute of Science

Aviad Rubinstein Stanford University

Grant Schoenebeck University of Michigan

C. Seshadhri University of California Santa Cruz

Elaine Shi Carnegie Mellon University

David Shmoys Cornell University

Adam Smith Boston University

Daniel Spielman Yale University

Thomas Steinke Google

Kunal Talwar Apple

Li-Yang Tan Stanford University

Eva Tardos Cornell University

Jonathan Ullman Northeastern University

Vinod Vaikuntanathan Massachusetts Institute of Technology

Sergei Vassilvitskii Google

Prashant Vasudevan University of California Berkeley

Vijay Vazirani University of California Irvine

Santosh Vempala Georgia Institute of Technology

Suresh Venkatasubramanian University of Utah

Matt Weinberg Princeton University

Ryan Williams Massachusetts Institute of Technology

John Wright University of Texas at Austin

Henry Yuen Columbia University

