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Foreword
Theoretical computer science (TCS) is a subdiscipline of 
computer science that studies the mathematical foundations 
of computational and algorithmic processes and interactions. 
Work in this field is often recognized by its emphasis on 
mathematical technique and rigor. At the heart of the field 
are questions surrounding the nature of computation: What 
does it mean to compute? What is computable? And how 
efficiently? These lines of inquiry applied to different models 
and settings of computation have resulted in new disciplines 
within and beyond computer science including learning theory, 
cryptography and security, quantum computing, economics 
and computation, computational biology and computational 
geometry. In recent decades, the field expanded its reach into 
many varied topics at the forefront of technology, physical 
sciences and social sciences. The infiltration into different areas 
helped bring mathematical rigor and algorithmic thinking to 
areas such as privacy, fairness, and data science. This breadth 
of application areas is interconnected through a technical core 
of computational complexity and algorithm design.

This document describes some recent and current directions 
of research within TCS, how these directions contribute to 
the betterment of the discipline and the betterment of society 
and some of the technical challenges that lie ahead. A primary 
goal of this document is to convince the reader that strength 
in theoretical computer science is vital to the health of the 
computer science field as a whole, as well as, the continuation 
of technological progress in the 21st century.

Theoretical Computer Science impacts computing and society by 
identifying key issues in new areas and framing them in ways 
that drive development. In fact much of the history of Computer 
Science, as viewed through the lens of Turing Award citations, 
is filled with examples of major fields that were pioneered by 
TCS researchers: cryptography (Adleman, Rivest, Shamir, Micali, 
Goldwasser); the modern theory of algorithms and computational 
complexity (Cook, Karp, Hopcroft, Tarjan, Hartmanis, Stearns, 
Blum, Yao); the foundations of machine learning (Valiant); and 
distributed systems (Lamport, Liskov).  More recently, TCS has 
played a central role in the creation of the fields of quantum 
computation, algorithmic economics, algorithmic privacy and 
algorithmic fairness.  

A unique feature of Theoretical Computer Science is its ability 
to discern computation and algorithms in settings beyond 
Computer Science proper. Examples include neuroscience, where 
one models systems within the brain and nervous system as 
computation by networks of discrete elements (for a seminal 
example of this perspective, see Valiant’s “Circuits of the Mind”); 
systems biology, where networks of interacting genes or 
proteins are understood via computational models; economics, 
where self-interested interacting entities can be naturally seen 
to be performing a distributed computation; and physics, where 
the fundamental notions of information and computation, and 
insights from TCS, are deeply entwined in the current frontiers 
of research in gravity and quantum mechanics. Breakthrough 
results in pure mathematics and statistics by TCS researchers 
are becoming increasingly common (for example, the refutation 
of the Connes Embedding Conjecture, and the proof of the 
Kadison-Singer Conjecture).

Key technologies that grew out of Theoretical Computer 
Science have had a major impact in industry. Examples include 
the discovery of the principles that led to Google’s PageRank 
algorithm; the development of Consistent Hashing, which in 
large part spawned Akamai; various key innovations in coding 
theory such as rateless expander codes for fast streaming, polar 
codes as part of the 5G standard, and local reconstruction codes 
for cloud storage; fast, dynamic algorithms that form the basis 
of navigation systems such as Google Maps and Waze, and other 
applications; quantum computing; cryptographic innovations 
such as public-key encryption and multiparty computation that 
form the foundation of a secure Internet; and the cryptographic 
underpinnings of cryptocurrencies and blockchain technology.  

Despite this wide range of application areas and intersecting 
scientific disciplines, the field of TCS has thrived on the basis 
of a strong identity, a supportive community, and a unifying 
scientific aesthetic. The field is defined by a well-developed 
common language and approach that exposes previously 
unknown connections between disparate topics, thereby driving 
progress.

This document presents the case for robust support of 
foundational work in TCS, structured so as to allow unfettered 
exploration guided by the opportunities and needs of a rapidly 
changing and dynamic field, and thereby bringing about the 
greatest possible impact to society. This model has been 
extraordinarily successful in the past. 
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A STRONG THEORETICAL COMPUTER 
SCIENCE FOUNDATION 
The core of TCS encompasses some of the deepest and most 
fascinating questions in Computer Science and Mathematics, 
including the P vs. NP problem and many other fundamental 
questions about the possibilities and limitations of algorithms 
and computation. But it is also teeming with more modern 
problems that arise from an expansive view of computation 
as a language for understanding systems in many contexts. 
TCS has a unique way of framing these problems in terms of 
tradeoffs between computational resources; for example, 
between optimality and computational efficiency, online versus 
offline computation, centralized versus distributed equilibria, or 
degree of interaction versus security. Important fields such as 
streaming algorithms, rigorous cryptography, and algorithmic 
privacy were the direct outgrowth of this “TCS approach”. Core 
TCS research focuses on a computational problem as the central 
object, rather than the development of prevailing algorithms and 
methods for a given problem. This viewpoint drives innovation 
and has led to unconventional approaches and solutions, often 
by identifying previously unknown connections between fields.

Importantly, these developments and many others arise from 
a strongly supported core of TCS researchers adept at 
identifying important problems from a broad range of settings, 
applying the tools of TCS, pulling in (and in some cases 
developing) sophisticated mathematics, and following the 
research wherever it leads. 

Sustained and predictable investment in core TCS, supporting the 
best ideas wherever they arise, is key to continued innovation 
and success in the coming decade. While it is difficult to predict 
which advances will have the widest impact, past experience 
shows that investing in core TCS produces profound returns. 

HOW THIS DOCUMENT CAME ABOUT
Every ten years or so the TCS community attends 
visioning workshops to discuss the challenges and recent 
accomplishments in the TCS field. The workshops and the 
outputs they produce are meant both as a reflection for the TCS 
community and as guiding principles for interested investment 
partners. Concretely, the workshop output consists of a number 
of nuggets, each summarizing a particular point, that are 
synthesized in the form of a white paper and illustrated with 
graphics/slides produced by a professional graphic designer. 

The second TCS Visioning Workshop was organized by the 
SIGACT Committee for the Advancement of Theoretical Computer 
Science and took place during the week of July 20, 2020. Despite 
the conference being virtual, there were over 76 participants, 
mostly from the United States, but also a few from Europe and 
Asia who were able to attend due to the online format.

The workshop included a very diverse set of participants 
including people from industry and from fields other than TCS. 
Represented sub areas included: Data-Driven Algorithms, Coding 
Theory and Communication, Complexity Theory, Optimization, 
Cryptography, Foundations of Machine Learning and Data 
Science, Sublinear Algorithms, Distributed Computing, Economics 
and Computer Science, Fairness and Social Good, Privacy, and 
Quantum Computing. 

Workshop participants were divided into categories as reflected 
in the sections of this report: (1) models of computation; (2) 
foundations of data science; (3) cryptography; and (4) using 
theoretical computer science for other domains. Each group 
participated in a series of discussions that produced the 
nuggets below. 
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COMPUTATIONAL COMPLEXITY
Complexity theory tries to classify computational problems 
according to the resources they use and then relate the classes 
to one another. The process often involves reductions of the 
form: any algorithm for solving Problem A can be used to solve 
Problem B, and thus, the resources required of an algorithm 
for solving Problem A must be, at least, those required of 
any algorithm for solving Problem B. Using such reductions, 
celebrated work has designed a universally optimal algorithm 
for a wide range of discrete optimization problems. While 
traditional complexity theory focuses on separating “easy” 
from “hard” problems, a recent trend looked at more fine-
grained measures, relating problems to each other so that we 
can understand exactly how easy or how hard such problems 
are. Yet another explanation complexity theory has provided is 
how hard problems can be used as a source of randomness, 
that is, a sequence of bits may look random to an algorithm 
with limited resources, but be non-random to more powerful 
algorithms. 

A Universal Algorithm for Discrete  
Optimization 
Automating algorithm design for finding  
the best solution.

A wide range of societal, economic, and computational 
challenges can be viewed as discrete optimization tasks. These 
tasks include finding the best way to allocate constrained 
resources like trucks to shipments, creating schedules for 
airplanes, choosing the best routes for delivery, or finding the 
best representation of data for machine learning. 

Research over the last two decades has shown that a 
single, simply-tunable (universal) algorithm – semidefinite 
programming based on sum-of-squares proofs (also known as 
the SOS algorithm) – is the most successful algorithm for all 
of these problems. Moreover, breakthrough work in complexity 
has indicated that the SOS algorithm is not only a good method, 
but is the best possible method among any that are currently 
and efficiently implementable.

Unifying Modern Computational 
Challenges 
Fine-grained complexity connects disparate 
problems together.

What do the following have in common: finding the differences 
between two documents, searching for pictures in your gallery 
resembling the one you just took, and uncovering small groups 
of mutual friends? For all of these search tasks, computer 
scientists know quick and inexpensive methods for solving 
them on moderately-sized examples. However, the same 
methods are challenged on larger examples, arising in the 
era of big data. When the “documents” are enormously-long 
human DNA strands, the galleries have billions of images, and 
the friends are on social networks with billions of users, these 
formerly-quick methods can become rather slow, consuming 
massive energy, memory, and other resources. The theory of 
fine-grained complexity provides a precise understanding of 
how the best methods to solve these and many other problems 
will scale with the size of the input data. 

A web of interconnections has been revealed, showing that 
the challenges for many different domains are deeply linked 

Models of Computation
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through a few “core challenge” problems. These core problems 
reveal common bottlenecks that must be overcome to achieve 
more efficient programs in a wide range of applications. This 
gives evidence that the “slow down” of these algorithms on 
larger inputs is not an artifact of certain programs we run, but a 
deeper phenomenon: a computational “law of nature” to which 
any program must conform. Beyond the scientific benefits of 
understanding how core problems relate to each other, a fine-
grained understanding of computational difficulty could be used 
to design new tools in cybersecurity, and improve blockchain 
technology (the basis for bitcoin and other e-currencies), where 
it is crucial to know precisely how much work must be done to 
solve a problem. 

Harnessing Unpredictability 
The power of random choices in computation.

Randomized algorithms pervade both the theory and practice of 
computer science. In this instance randomness can be defined 
as a resource rather than randomness in the input data. In 
other words, the algorithm is allowed to toss coins and make 
decisions based on the results, but the input to the algorithm 
is arbitrary. Perhaps surprisingly, randomized algorithms are 
often much more efficient for solving tasks than algorithms 
that do not make random choices. 

Beyond computer science, randomness is an enigmatic 
phenomenon that has long fascinated and frustrated 
philosophers, physicists, and mathematicians alike. Complexity 
theory pioneered the realization that randomness is not 
absolute, but relative to the way it is used. Using this realization, 
complexity theory discovered a deep duality between 
randomness and the existence of “hard problems” — problems 
that cannot be solved by any efficient program. Paradoxically, 
this means that hard problems are useful in designing efficient 
programs in other areas. This has led to breakthroughs in 
many fields, including modern cryptography, privacy, scientific 
simulation and cloud computing.

References
Ball, M., Rosen, A., Sabin, M., & Vasudevan, P. N. (2017). Average-

case fine-grained hardness. Proceedings of the 49th Annual 
ACM SIGACT Symposium on Theory of Computing, 483-496. 
doi:10.1145/3055399.3055466

Ball, M., Rosen, A., Sabin, M., & Vasudevan, P. N. (2018). Proofs 
of work from worst-case assumptions. Lecture Notes in 
Computer Science Advances in Cryptology – CRYPTO 2018, 789-
819. doi:10.1007/978-3-319-96884-1_26

Ball, M., Dachman-Soled, D., & Kulkarni, M. (2020). New techniques 
for zero-knowledge: Leveraging inefficient provers to reduce 
assumptions, interaction, and trust. Advances in Cryptology 
– CRYPTO 2020 Lecture Notes in Computer Science, 674-703. 
doi:10.1007/978-3-030-56877-1_24

Dalirrooyfard, M., Lincoln A., and Williams, V.V. (2020). New 
techniques for proving fine-grained average-case hardness. 
arXiv preprint arXiv:2008.06591

Degwekar, A., Vaikuntanathan, V., Vasudevan, P.N. (2016). Fine-
grained cryptography. Annual International Cryptology 
Conference, 533-562. Springer, Berlin, Heidelberg, 2016. http://
dx.doi.org/10.1007/978-3-662-53015-3_19 

Nisan, N., & Wigderson, A. (1994). Hardness vs randomness. 
Journal of Computer and System Sciences, 49(2), 149-167. 
doi:10.1016/s0022-0000(05)80043-1

Raghavendra, P. (2008). Optimal algorithms and inapproximability 
results for every CSP? Proceedings of the Fortieth Annual 
ACM Symposium on Theory of Computing - STOC 08, 245-254. 
doi:10.1145/1374376.1374414

Williams, V. V. (2019). On some fine-grained questions in algorithms 
and complexity. Proceedings of the International Congress of 
Mathematicians (ICM 2018), 3. doi:10.1142/9789813272880_0188 



9

VISIONS IN THEORETICAL COMPUTER SCIENCE

SUBLINEAR ALGORITHMS
The large amount of data available in certain settings sometimes 
requires algorithms which do not have time to analyze all the 
data, and/or the memory to remember all the data. For example, 
the Large Hadron Collider generates one petabyte of data per 
second! We thus seek algorithms whose running time and/
or memory usage are sublinear in the size of the data being 
processed. Such considerations have led to much work on 
algorithms which make just one pass over a stream of data 
(“streaming algorithms”), compressed data structures or data 
communication protocols with complexity far smaller than data 
size (“sketching”), and sublinear time algorithms which only 
look at a small fraction of data.

Computing on Massive Datasets, made 
Easy by Sketching
Matching photos and how the fruit fly’s brain 
processes — what’s in common?

Data is abundant: over one billion photos are uploaded daily 
to just Google Photos. Analyzing such massive data can easily 
overwhelm available resources. For a typical photo matching 
task — grouping today’s photos by their contents — a naive 
approach would perform more than quadrillions of photo 
comparisons, a task out of reach for computers. Sketching 
arose as a prominent TCS paradigm to perform such tasks by 
summarizing (sketching) the data to store only the essential 
information. This reduces the data size dramatically and makes 
the computational task easier. How does one sketch and use 
such sketches to enable efficient computation? 

This question has inspired an exciting body of research in TCS 
that has impacted diverse applications including databases, 
machine learning, and signal processing (e.g., MRI). Sketching 
has enabled a new class of low-memory procedures that can 
process large amounts of real-time data, without storing all of 
it. Techniques in sketching have stimulated the development 
of a new field of randomized linear algebra that addresses 
key problems in scientific computing, network analysis, and 
machine learning. Strikingly, similar sketching methods have 
been discovered in nature, for instance, in how fruit flies 
process odors in their brain. 

Sublinear Network Analysis
Studying big networks from small samples.

Networks are ubiquitous. They model diverse phenomena 
including the transmission of information, social communication, 
and molecular interactions. We often cannot see the entire 
network; either it is too big, or too expensive to observe all 
of it. Yet, an understanding of these networks is key to many 
disciplines. Can we predict an epidemic spread by observing 
only a few social interactions? Can we learn the operation 
of spam networks by tracking only a few spammers? Can 
we understand the resilience of the nation’s power grid by 
studying a few power stations? 

Many questions follow this theme: a large network of 
importance, but the ability to only see a small portion of it. The 
study of sublinear algorithms provides the language and tools 
to rigorously describe and understand such problems. Given the 
explosive growth in network data, there is a compelling need 
to build a theory of sublinear network analysis that resonates 
with the various networks in the real world.
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Understanding the Brain
Use ideas and methodologies from theory of 
algorithms to develop an algorithmic view  
of the brain.

Understanding how the brain performs complex tasks is 
one of the biggest mysteries to elude scientists from many 
different fields including biology, neuroscience and computer 
science. When viewed from a computational standpoint, the 
challenge is identifying the key algorithmic ingredients and 
the right architecture to understand the brain conceptually; 
this algorithmic viewpoint allows us to think in an abstract 
way and disentangles the precise physiological details from 
the algorithmic abilities. TCS can study different tasks such as 
language understanding and propose algorithmic architectures 
for solving such tasks while backing them up with arguments or 
proofs that justify their efficacy. TCS can also help in modeling 
these tasks — for example, by providing a generative model for 
language.

There are several ideas in algorithms, in particular, data 
structures for similarity search, sketching, storage and 
indexing, and graph processing, all of which seem to be 
essential components of almost any major learning task that 
humans perform. For example, the way we access events from 
memory is almost always never exact, but tolerant to noise; 
thus we likely almost never store things in memory precisely, 
but in some concise “sketched” format. We perhaps store a 
graph of concepts or events based on how they are related or 
correlated. With its current set of algorithmic tools TCS can help 
us understand and propose how there may be special units in 
a “conceptual view” of the brain and how these units interact 
and work together to solve hard learning tasks. In addition to 
helping us understand the brain, this may also help us develop 
new ideas that may contribute to the field of algorithms and 
computer science.
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CODING THEORY AND 
COMMUNICATION
Coding theory is the study of codes for specific applications. 
A code can be used for data compression, data transmission, 
and data storage. The goal is to design efficient and reliable 
codes to remove redundancy and to detect and correct errors. 
Given the recent explosion in the amount of data created by 
various applications, understanding how to design super-
efficient codes that deal with frequently occurring errors 
on massive data sets is crucial. As inspiration for designing 
codes, we can look at the miraculous ability of various naturally 
occurring storage devices, such as our DNA. There are a number 
of challenges we must face if we want to make DNA storage 
a reality. Closely related to the ability to reliably store and 
encode information is the ability for two agents to reliably 
communicate and understand each other, which requires 
encoding information in a way that makes recognition and 
agreement between agents possible.

DNA for Data Storage
Storing the world’s data in a few grams of DNA.

The storage density and longevity of DNA is a miracle of nature. 
Each cell in your body contains a tiny bit of DNA which encodes 
all of you. Not only does a single gram of DNA contain 215 million 
gigabytes of information, that information remains readable for 
several hundred thousands of years.

DNA storage is a tremendous emerging technology to deal with 
the exponentially increasing amounts of data we produce, 
which roughly doubles every two years. However, making DNA 
storage a reality requires a deep understanding of how to code 
for and deal with insertion and deletion errors that frequently 
occur when reading or writing DNA. 

Coding Theory for Computing
Getting the most out of imperfect hardware.

Today, trillions of transistors, each being a few atoms wide, 
are performing massive computations and the computational 
demands continue to increase exponentially. Fundamental 
laws of physics show that accommodating such a growth will 
inevitably make the next-generation hardware prone to errors 
on every level of computation. 

Classical error correcting codes, that have fueled the information 
revolution, are designed to protect data against errors. Scalable 
computation on future faulty hardware crucially requires new 
types of codes that can protect computation against errors. 
Such codes also play a key role for building quantum computers. 

A Theory of Explanations
What does it mean to explain “why” a system  
made a decision? What does it mean to “accept”  
an explanation?

Theoretical computer science has an excellent record of 
formalizing social constructs, from privacy-preserving data 
analysis (differential privacy) to protocols for convincing 
a recipient of the veracity of a mathematical statement 
(interactive proofs, zero-knowledge) or verifying that a message 
did indeed originate with a claimed sender (digital signature). 
As algorithms reach ever more deeply, and more consequently, 
into our lives, there is a sense that their decisions should be 
“explainable”, or “interpretable”. Regulation may even require 
this (“There is no single, neat statutory provision labelled the 
‘right to explanatio’ in Europe’s new General Data Protection 
Regulation (GDPR). But nor is such a right illusory.” — Selbst and 
Powles). What is the mathematical meaning of an explanation? 
Is an explanation more valuable if it is accepted by a party 



12

VISIONS IN THEORETICAL COMPUTER SCIENCE

with greater resources, such as domain knowledge and 
computational ability, than if it is accepted by a party with 
limited resources? Are explanations unique, or can ex post 
justifications obscure the real reasons for a decision? Two 
natural starting points to answering these questions are the 
insights and tools in interactive proof systems and the work 
on goal-oriented universal semantic communication. These 
areas work to address the question of “how can two intelligent 
entities (or agents), that have no prior knowledge of each other, 
communicate to reach a state of understanding?”
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DISTRIBUTED COMPUTING
The quantity of data we, as a society, generate and use on a daily 
basis is massive. It goes far beyond our capacity to store and 
process on any one machine. Furthermore, the data is shared by 
many users and accessed from many locations. A key research 
achievement of distributed computing has been distributed 
cloud storage systems that enable the big data technologies 
that are generating so much excitement today. These systems 
rely on fast algorithms for accessing shared data concurrently 

while updates are being performed. In addition, they rely on 
algorithms for maintaining consistent data efficiently over 
large distances. These algorithms were developed, in part, 
by unforeseen connections between biological distributed 
mechanisms and other distributed scenarios occurring in 
nature. Further understanding this connection will help expand 
our current technologies. This is especially important given the 
rapid growth of data, with scalability as a natural concern. 
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Biological Distributed Algorithms
Using algorithms to understand nature, and  
nature to inspire algorithms.

The rapidly expanding field of biological distributed algorithms 
applies tools from the formal study of distributed computing 
systems to better understand distributed behavior in nature, 
and in turn uses these insights to inspire new ways to build 
computing systems. Results in recent years have revealed the 
surprising degree to which these two worlds are intertwined. 
For example, techniques adapted from the theoretical study 
of distributed systems helped uncover how ant colonies find 
food and allocate work, explain the eerie efficiency with which 
slime molds spread to locate food, identify simple strategies 
with which fireflies might desynchronize their flashes, unlock 
the capabilities of chemical reaction networks, and produce 
progress on open questions concerning how neurons in the 
human brain solve fundamental problems. Moving in the other 
direction, the models and techniques developed to study 
fireflies led to ideas used in breakthroughs in classical 
distributed graph problems and the algorithmic treatment of 
human neurons is unlocking new ideas for digital machine 
learning. A challenge is to further strengthen and learn from 
these connections, in order to mutually advance distributed 
algorithms, as well as, our understanding of naturally occurring 
distributed systems. 

Scalable Network Algorithms
Computing on data too large to store in one place. 

Data is exponentially growing and vastly exceeds what can be 
computed on in a single machine. As a result, modern systems 

consist of many tens of thousands of networked servers 
running distributed algorithms. Delays, limited bandwidth, 
and lack of parallelizability are bottlenecks that arise and 
fundamentally new distributed algorithms are key to achieving 
solving these efficiency problems. Novel models allow us to 
develop algorithms for these massively parallel computations.

At the same time, new programming paradigms for large-scale 
graph processing, like Google’s Pregel or Facebook’s Giraph, 
implement interfaces precisely matching classical distributed 
message-passing models. Message-passing algorithms developed 
for these models now fuel the collection and analysis of network 
data. Making these algorithms even more efficient by going 
beyond worst-case guarantees remains an ongoing fundamental 
challenge with wide-ranging promise for future systems.
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QUANTUM COMPUTING
The ability of quantum computers to outperform classical 
computers is becoming a reality. How did quantum computers 
first beat classical ones? It took heroic experimental feats, 
ultracold temperatures, and a decade of work by theoretical 
computer scientists. This leads to natural questions, such as 
how to design even faster algorithms for quantum computers 
and how to verify their computations. Moreover, the ideas from 
quantum computing have been revolutionizing many areas of 
physics — from explaining new states of matter to the study 
of quantum gravity, wormholes, and Stephen Hawking’s black 
hole information paradox. The next step is figuring out how 
to best harness this power to make further impacts on other 
scientific disciplines.

In the Fall of 2019, quantum computing achieved a historic 
milestone when Google announced the achievement 
of “quantum supremacy”: that is, the first-ever use of a 
programmable quantum computer to perform some task 
that’s believed to be much harder with any of the current 
conventional computers. Google’s chip, called “Sycamore,” 
used 53 superconducting qubits, cooled to a hundredth of a 
degree above absolute zero, to generate random 53-bit strings, 
in which the probabilities of some strings were enhanced by 
constructive quantum interference. The task was admittedly 
an artificial one — but Sycamore completed choreographing 
nine quadrillion amplitudes in quantum superposition in 
three minutes, while even conventional supercomputers with 
hundreds of thousands of cores are conjectured to need at 
least several days. This was first and foremost a remarkable 
feat of engineering — but John Martinis, who led the Google 
team responsible for it, has said that it wouldn’t have happened 
had theoretical computer scientists not laid the groundwork. 
This experiment represents the moment at which quantum 

computing has finally entered the early “vacuum tube era,” with 
actual experiments that will inform us about the possibility of 
quantum speedups for practical problems. Once you’ve built 50 
or 60 noisy, programmably-coupled qubits, what should you 
have them do, to provide the most convincing possible speedup 
over a classical computer? How should you check the quantum 
computer’s results? How confident can you be that the task 
in question really is classically hard? Since 2009, theoretical 
computer science has made a decisive contribution to answering 
all these questions, starting from abstract complexity theory 
and proceeding all the way to experimentation.

Verifiable Quantum Computing
How can you check a quantum computer’s 
calculation?

Quantum computers are believed to have extravagant 
computational capabilities. While this means they have the 
potential to solve extremely complex problems, this power also 
makes it especially difficult to verify that they are behaving as 
intended. Over the last 15 years, theoretical computer scientists 
developed sophisticated methods to tackle the quantum 
verification problem. These methods leverage decades of theory 
research spanning complexity, cryptography, and physics. 
A couple of recent achievements exemplify the resulting 
significant theoretical and practical impact. The first example is 
the US National Institute of Standards and Technology’s use of 
these methods in their “Randomness Beacon” to provide a source 
of certified quantum random numbers. Secondly, researchers 
demonstrated it is possible to use cryptography to check the 
calculations of a cloud quantum computer. And most recently, 
in early 2020 there was a breakthrough in quantum verification 
that solved the 46-year-old Connes’ Embedding Conjecture from 
pure mathematics — spectacularly highlighting the far-reaching 
impact of research in verifiable quantum computing.
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As quantum computing transitions from theory to practice in 
the upcoming years, questions of quantum verifiability take on 
increasing importance. For example, is there a way to verify the 
calculations of intermediate-scale, noisy quantum computers 
that are offered over the cloud? Can smaller quantum computers 
be used to check the results of larger quantum computers? Is 
there a tradeoff between privacy, efficiency, and verifiability of 
quantum computations? What types of quantum cryptosystems 
can be built using verification protocols? Theoretical computer 
science will continue to play a crucial role in finding the answer 
to these questions.

A Quantum Computing Lens on Physics: 
From Exotic Matter to Black Holes
Over the last decade, ideas from quantum computing have been 
revolutionizing many areas of physics — from explaining new 
states of matter to the study of quantum gravity, wormholes, 
and Stephen Hawking’s black hole information paradox.

One of the most important uses of quantum computers will be 
for performing large-scale simulations of quantum physics and 
quantum chemistry — for example, simulating large molecules 
for drug discovery or simulating exotic states of matter for 
materials design. In recent years, ideas from theoretical 
computer science such as random walks and gradient descent 
have led the way in developing faster and more practical 
algorithms for quantum simulations and they are on the verge 
of being run on real-world quantum hardware. However, many 
fundamental challenges remain. For example, can quantum 
computers developed in the near term be used to solve 
simulation problems that are intractable for classical computers? 
Can quantum computers aid us in designing exotic materials, 
such as high-temperature superconductors? Such research 
directions will require deep and sustained interdisciplinary 
collaborations with the physical sciences. 

Even before it was thought to use quantum computing as 
a practical tool for materials science, ideas from quantum 
computing have become indispensable to fundamental physics. 
One of the central questions in this domain is how to combine 
the two great theories of 20th century physics: gravity and 
quantum mechanics. These ideas conflict most dramatically 
when considering black holes. Quantum mechanics predict that 
information is never created or destroyed, while Einstein’s theory 
of gravity predicts that information thrown into a black hole is 

lost forever. Resolving this paradox is an important step towards 
establishing a theory of quantum gravity. Recently a promising 
approach to this puzzle was developed based on quantum 
error correcting codes. These codes were designed to protect 
quantum data against noise by using redundancy by spreading 
out information across many systems. This phenomenon turned 
out to be an effective way to describe the distorted space-time 
in the vicinity of a black hole. This revelation has led to the study 
of black holes, wormholes, and other puzzles of quantum gravity 
through the lens of quantum information — importing ideas from 
computer science including error correction, computational 
complexity and convex optimization.

Examples of real-world impact include:

1.  Roughly half of DOE supercomputer time is used for quantum 
simulation and quantum computers have the potential to 
both reduce the cost of these simulations and extend their 
scope.

2.  Molecular simulations are already of significant use in 
the pharmaceutical and chemical industries. Quantum 
computers could make existing simulations cheaper and 
enable new ones that would never have otherwise been 
possible.

3.  Improvements in chemistry and material science could mean 
stronger and lighter materials for cars, airplanes and other 
machines — better solar cells; improved superconductors; 
better catalysts for industrial processes.

4.  Recent advances in high-temperature superconductors 
are responsible for a promising recent approach to fusion 
power, but the underlying physics of these superconductors 
remains mysterious since they are too difficult for our 
existing computers to accurately model.

New Frontiers in Quantum Algorithms
Which problems can be solved exponentially  
more quickly by quantum computers?

Factoring numbers — say, factoring 21 into 3 x 7 — is one of 
the oldest problems in mathematics, and is the basis of most 
encryption used on the internet today. Factoring small numbers 
is relatively easy but when the numbers are thousands of digits 
long, our existing computers would take longer than the age of 
the universe to find the factors. However, two and a half decades 
ago, Peter Shor showed that a quantum computer could factor 
even large numbers quickly, setting off a scramble to find new 
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codes to protect our communications and to understand what 
features of quantum mechanics enable this remarkable ability.

Since then, researchers have shown that quantum computers 
dramatically outperform their classical counterparts on a 
variety of other problems as well, including simulating physics 
and chemistry. In the future, we expect quantum computers to 
find even more applications. We list three of the most important 
potential applications below.

1.  Machine learning and optimization have an enormous and 
still-growing range of applications in industry and science. 
Quantum computers can approach these problems in 
qualitatively different ways but our understanding of the 
power of these methods is still incomplete. Can quantum 
computers speed up machine learning and optimization or 
improve the quality of the answers?

2.  Due to Shor’s factoring algorithm, NIST is currently sifting 
through candidate cryptosystems to replace the factoring-
based cryptosystems in use today. How can we tell if these 
“post-quantum cryptosystems” are actually secure against 
quantum computers? Trying to design quantum algorithms 
to break these systems is a crucial component of this area 
of research. 

3.  For now, and the foreseeable future we will have access to 
noisy intermediate-scale quantum (NISQ) computers, which 
are small quantum computers with hundreds or thousands 
of qubits rather than the many millions of qubits that a 
full-scale quantum computer requires. Can these NISQ 
machines give speed-ups, even though they are small?
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Foundations of Data Science

DATA-DRIVEN ALGORITHM DESIGN 
Data Science is a discipline focused on extracting knowledge 
from data using tools from mathematics, statistics, and 
computer science. Though the term was introduced more than 40 
years ago, it only became widely used in the early to mid 2000s, 
with a surge in popularity in the last decade accompanied by 
several universities creating degree programs, institutes, and 
schools devoted to the subject. Theoretical computer science 
specifically, together with other fields, has played a major 
role in contributing to the foundations of the discipline, such 
as defining computational models, developing new efficient 
algorithms for them, and providing a computational lens on 
statistical questions.

Below we discuss avenues for further research in adaptive 
data analysis and protecting data from overuse. This 
includes using machine learning to augment algorithms while 
maintaining provable guarantees, self-improving algorithms 
that use feedback from data, and understanding special 
properties of datasets that are relevant in practice and that 
allow us to analyze algorithms beyond the worst case.

Tools for Replicable Science
Protecting the scientific value of data  
from overuse.

Scientific and medical research is facing a “replication crisis”. 
Many published results from these areas do not hold up when 
tested on new data. In other words, the original research 
identified a pattern that only occurred by chance in one dataset, 
rather than discovering an underlying truth in all datasets. This 
problem commonly arises when a dataset is over-used; as the 

saying goes, “if you torture the data long enough, it will confess 
to anything.” 

How can we design systems for data analysis that allow 
scientists to re-use the data across many studies and draw 
valid conclusions? The greatest challenge is that the design 
of later studies can depend on the results of earlier studies, 
making the usual statistical tools incorrect. This leads to false 
“discoveries” due to overconfidence in results’ significance. The 
problem stems from the myriad of possible analyses one can 
interpret from a study and the unaccounted influence of the 
data on that choice. Tackling this problem is fundamental to 
the long-term value of scientific research in every data-driven 
field, as highlighted by the frequent difficulty of reproducing 
scientific results.

One overly restrictive approach is to require researchers to pre-
register their experiments, preventing them from accessing the 
dataset more than once. Over the past few years, a group of 
breakthrough papers from the computer science community 
addressed this question and showed that when the data is 
accessed only by sufficiently “stable” algorithms, then we can 
recalibrate the statistical tools to maintain accuracy despite 
the use of the data in both choosing an analysis and carrying it 
out. The first, and still best-known way to design such robust 
algorithms comes surprisingly from a security condition called 
“differential privacy”. This condition limits the extraneous 
information that an analysis reveals about the data. 

This work in computer science parallels efforts in statistics on 
“selective inference” and “false discovery rate”. These similar 
areas of interest tackle different aspects of the same larger 
problem. Taken together, solutions to this problem hint at a 
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tremendous opportunity; that of designing robust, reliable tools 
that allow data scientists to explore data and draw valuable 
insight from them, without mistaking characteristics of a 
particular data source for a general trend. Currently, we have 
access to more vastly varied data than ever before. Getting 
real value from these resources requires an interdisciplinary 
approach using ideas from statistics and areas of computer 
science, such as machine learning, data mining, and even data 
privacy, to design the tools we need.

Data Dependent Algorithms
One size does not fit all — tailoring algorithms  
to data.

The traditional approach to algorithm design is to focus on worst 
case scenarios, an excellent idea when mission critical tasks are 
in question. However, often the outcome is suboptimal in other 
scenarios. Imagine, for instance, preparing for a blizzard each 
time you leave your house. An exciting new direction in TCS is 
designing algorithms that perform better on “nice” data, the type 
of data that arises the most in practice. This new perspective 
aims at discovering unifying principles that can be used in a range 
of applications. The challenge is twofold: (1) characterize natural 
properties of data and define models that can be exploited for 
better performance. In particular, we seek data characteristics 
that persist across a broad range of computational tasks, (2) 
design algorithms that can exploit conducive features of data 
to improve their guarantees. Ultimately, the goal is to find data 
dependent algorithms that are as efficient as possible for each 
individual input.

This is a nascent line of research, but there are already some 
concrete examples where such an endeavor demonstrates 
promising success. There are two recent first steps: (1) the 
amazing developments in neural networks and deep learning 
are largely based on their power to represent massive 
collections of complex data (such as human face images, or MRI 
images) with very high accuracy. That leads us to believe we 
can develop better algorithms assuming that their input data 
is modeled in the same way. Bora et al. [1] recently developed 
highly efficient image acquisition methods (an underlying task 
for MRIs), for images modeled in this way, improving over the 
state-of-the-art by up to one order of magnitude, (2) an exciting 
new line of work by Kraska et al. [2] and by Mitzenmacher 
[3] characterizes “typical” data as “learnable” data. The study 

uses machine learning predictions about the input to improve 
the performance of various data indexing schemes that are 
widely used in software implementations, including standard 
programming languages and database systems.

Algorithms from Algorithms
Desperately need an algorithm? Meta-algorithm  
to the rescue!

An algorithm is a recipe to solve a problem. Designing algorithms 
is typically done by humans since it requires creativity and 
powers of formal reasoning. Given that computers are so 
powerful now, one wonders if they can supplement humans 
in the art and science of algorithm design. Can we create 
an algorithm that, given a problem description, designs an 
algorithm to solve it? Can we design an algorithm that self-
improves over time, learning from its mistakes? Can an algorithm 
automatically find the optimal policy in decision making? Can 
an algorithm discover the best algorithm to solve a problem?

We have long known that such goals are mathematically 
impossible for arbitrary problems. But when considering real-
world problems recent studies show these goals may be within 
reach. For a few problems, TCS researchers have shown how 
to make algorithms handle feedback and use the feedback to 
self-improve. The work lays out how to build algorithms that 
use problem-solution exemplars to design policies. In light of 
these early results, automated algorithm design is an area ripe 
for significant progress.
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FOUNDATIONS OF MACHINE 
LEARNING
It is undeniable that advances in theoretical computer science 
have had great positive impact on modern day machine learning 
as witnessed, for example, by the Kanellakis Award to Schapire for 
his work on “boosting” weak classifiers and to Cortes and Vapnik 
for their introduction of Support Vector Machines. The notion of 
“Probably Approximately Correct” learning and other notions at 
the core of computational learning theory were also developed by 
the TCS community, starting with the work of Leslie Valiant, then 
followed by many others.

Now with the central role machine learning plays in everyday 
life, new challenges and applications have emerged for which 
new foundations must be developed. For example, while 
traditional learning theory promotes the mantra of Occam’s razor 
(i.e., learning ‘simple’ concept classes should be ‘easier’), current 
techniques such as deep learning reject this conventional 
wisdom as they learn very complicated models with a large 
number of parameters. The ubiquity of machine learning also 
implies we need more robust learning algorithms that can 
perform well in the face of a small number of malignant users 

or corrupted training data, while simultaneously remaining 
efficient enough to fit on mobile devices such as cell phones. 
Machine learning systems should also maintain privacy and take 
game-theoretic considerations into account as users (people) 
interact with machine learning systems in strategic ways. All 
these considerations leave open a wide avenue for theoreticians 
to contribute to the development of the foundations of 
machine learning.

Building Machine Learning Systems You 
Can Trust
How can we make machine learning systems 
provably safe and dependable?

The fact that we currently trust machine learning with almost 
every aspect of our lives does not mean that our current 
machine learning toolkit is completely trustworthy. Existing 
machine learning systems can be easily manipulated to 
make mistakes which can compromise a number of critical 
applications. For example, ensuring that self-driving cars reliably 
detect pedestrians and obstacles, and making recommendation 
systems resilient to manipulations, are some of the challenges 
we have yet to tackle.
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This quest critically requires developing a comprehensive 
algorithmic theory that enables us to precisely frame potential 
risks and develop principled approaches to mitigating them. 
One of the first strands of such a theory has already delivered 
a methodology for drawing correct conclusions from complex 
datasets in the presence of a significant degree of false data, 
leading to state-of-the-art empirical performance. A significant 
generalization and refinement of this theory is necessary to 
further improve practical performance. A major goal for TCS is 
to develop principled methodologies to address the broad set 
of challenges at the forefront of trustworthy machine learning.

Foundations of Deep Learning
A solid fundamental understanding of deep 
learning would allow us to overcome its  
drawbacks and broaden its applicability.

Despite the huge impact that deep learning has had in 
practice, there are still many poorly understood aspects of this 
technology that are very different from classical methodology. 
Classical learning theory provides principled approaches for 
using data to choose simple prediction rules, whereas deep 
learning seems to achieve its outstanding performance through 
entirely different mechanisms: it relies on complex prediction 
rules, with an enormous number of adjustable parameters. 
Classical theory cannot explain why these complex prediction 
rules have outstanding performance in practice. In addition, it 
is also important to develop good mathematical models that 
explain data pertaining to language, images, and speech, and 
how their properties affect the complexity of learning. Gaining 
a theoretical understanding of these methods will be crucial for 
overcoming their drawbacks (see, for instance, the nugget on 
robustness), for developing algorithms that reduce the amount 
of trial and error involved in their deployment, and for extending 
them beyond the domains where they are currently applicable.

Algorithms for Discovering Causal 
Structures in Data
Uncovering causal relationships can reshape 
experimental design.

One of the most important problems in analyzing data is 
detecting causal relationships among observable attributes. 
Can we distinguish correlation from causation? A well-studied 
abstraction for representing causality is a graphical model or 
network where attributes are linked to indicate the influence of 

one attribute over another. Some of the attributes may be latent 
or hidden from the observer. Their behavior is revealed only 
indirectly through the observed attributes. A major challenge 
for TCS is reconstructing plausible networks from a small set of 
observable behaviors. 

For the fully observable case (no latent variables), efficient 
algorithms for learning the underlying network have only 
recently been obtained. These algorithms succeed even if the 
training set is small relative to the number of attributes. If we 
introduce a few latent variables, however, known solutions 
are slow to detect complex relationships among the observed 
attributes. The main goal is to break through this barrier 
and find efficient algorithms for the case of latent variables. 
Solutions will have a major impact in data mining and scientific 
modeling.

Resource Aware Machine Learning
Develop programs that can run on small devices 
and use as few resources as possible.

Computing devices have become smaller (e.g., smart-phones, 
smart-watches) and more common in real-world environments 
(e.g., adaptive thermostats, digital voice assistants). Machine 
learning is an integral element and key driver of their success 
that has enabled new exciting experiences. Unfortunately, 
these devices have stringent resource constraints, including 
reduced processing capabilities, decreased power supplies, 
and bounded internet connections. Such constraints make 
deploying the typical, resource-intensive toolkit of machine 
learning impractical. Hence, it is challenging to create programs 
that are fast and reliable in this setting. 

The question is how to design machine learning algorithms 
that can adhere to these resource constraints without 
compromising the offered functionality. TCS researchers have 
developed a mathematical abstraction of efficient programs 
that unifies the way we analyze various constraints. This allows 
us to better understand the fundamental tradeoffs among 
these real-world resources. Moreover, such an abstraction 
facilitates the development of machine learning methods that 
are aware of, and optimally adapt to the available resources. 
These advances have helped reduce the energy consumption 
of standard computers by using a similar tradeoff analysis.
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Machine Learning for a Social and 
Strategic World
Learning to design policies for people who  
have a vested interest in the outcome.

When machine learning systems interact directly with people, 
they affect the way people behave. In recent years, corporations 
and government organizations have been steadily increasing 
their use of machine learning techniques to automate business, 
social, and economic decisions. For example, automated 
resume screening services are trained using past hiring and job 
performance data, and the calculation of insurance premiums 
is based on collective personal data. These consequential 
decisions shape people’s lives and behavior which, in turn, 
shape the input to these critical decision-making systems. 

Our goal is to design systems that can automatically uncover 
insights from these complex interactions, while avoiding major 
failures and harmful distortion of incentives and behavior. 
These methods also need to operate in unpredictable and ever-
changing environments. It is therefore essential to develop 
methods that guarantee the performance of these systems 
even when the input changes. Adaptable machine learning 
systems that are designed in this way can shed light on how 
to improve and redesign existing social and economic policies 
to ensure reliable performance of the systems as well as the 
integrity of the societal forces they help to create. This is a vital 
step towards a world where technology serves to make society 
better, safe, and fair.
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OPTIMIZATION

Linear System Solvers
The essence and engine of scalable computation.

Algorithm researchers strive to design better ways of solving 
problems that are central to many disciplines; one such 
fundamental problem is solving a set of linear equations in many 
variables. Systems of linear equations arise throughout science 
and engineering, from calculating stresses on truss structures, to 
fluid simulations, or to modeling the behaviors of electromagnetic 
waves. In many cases where linear systems don’t exactly model 
the problem, they provide the steps that lead to the solutions. In 
fact, linear system solvers are the silent workhorses of much of 
large-scale computation today, including the search engines that 
power the modern internet.

Despite its storied history spanning centuries, we still do not 
know the fastest way to solve a system of equations. The 
approaches we learned to solve systems of equations in high 
school are too slow to solve the big problems we encounter 
in practice, even with the use of supercomputers. Over the 
last few decades, TCS researchers have developed entirely 
new techniques for solving equations in many variables that 
are much faster than classical methods. Many applications, 
(e.g., better integrated circuits, more fine-grained analysis 
of satellite images, and exploration of much larger social 
networks) have been greatly accelerated by the development 
of faster algorithms that solve the specific types of linear 
equations that arise within them.

For general linear systems, as well as many important 
subclasses, our best algorithms remain comparatively slow. 
Faster methods for solving systems of linear equations 
have led to, and will continue to lead to, accelerated drug 

design, better social network analytics, and more accurate 
recommendations of products for users. Advances in our 
understanding of this one fundamental problem impact all the 
areas in which it arises.

Algorithms Improve Medical Trials.
Making randomized control trials more  
efficient with algorithmic discrepancy theory.

Randomized controlled trials (RCT) are the gold standard for 
evaluating medical treatments, and are a major tool of inquiry 
in science. Indeed, no novel treatment or drug can be approved 
without being vetted via an RCT, which around $500M is spent 
on annually.

The key to success in a randomized controlled trial is identifying 
two groups (the treated group and the baseline/placebo 
group) of test subjects whose profiles are sufficiently similar 
in terms of gender, age, health, and every other potentially 
relevant characteristic. The standard approach to achieving 
such similarity is to randomly partition the population of 
experimental subjects into the two groups. Such random 
assignment does lead to the desired similarity, but turns out 
to be suboptimal in terms of the most critical resource: the 
number of test subjects needed to draw sufficiently reliable 
conclusions. Indeed, by the 1970s, mathematicians working 
in discrepancy theory had proved that it is possible to divide 
people into two groups that are much more similar than the 
groups one gets from random assignment. However, these 
findings could not be used in practice because we did not 
know a practical way of finding these remarkable divisions.

This finally changed in 2010 with a breakthrough that launched 
the field of algorithmic discrepancy theory. Theoretical computer 
scientists working in this field are developing methods that 
enable us to efficiently compute divisions of people into groups 
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whose makeups are shockingly similar. Through collaboration 
with statisticians these advances will create RCTs that provide 
us with more reliable conclusions while requiring fewer 
experimental subjects. This methodology is likely to accelerate 
the new drug and treatment development process, significantly 
reduce the cost of scientific studies across social sciences 
and medicine, and attain greater confidence in the identified 
findings.
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Cryptography

Cryptography has become the backbone of the Internet: it is 
deployed everywhere and secures our online banking, shopping, 
email, and other online activities. While traditionally cryptography 
was used to secure our communication, modern cryptography 
promises to secure even our computation. For example, Multi-
Party Computation and Fully Homomorphic Encryption enables 
computation on encrypted data; and program obfuscation 
promises to hide secrets in our software. In the past decade, 
decentralized blockchains have gained traction, and there is a 
growing appetite for such rich cryptographic primitives to be 
deployed in the real world. The amazing developments from 
the cryptography community over the past ten years will lead 
to transformative new applications, in particular, it will allow 
computing and sharing of, and machine learning over, sensitive 
data while protecting our privacy.

Can we Compute on Encrypted Data?
Can you search the web without revealing  
your search query?

Can you run a python program without giving your input to 
the program? Can you contribute your data to a medical study 
while keeping the data private? Can we perform contact tracing 
and epidemic analysis without leaking users’ private location 
traces?

Classical cryptographic systems are all-or-nothing; either you 
know the private key in which case you can see all of the data, 
or you don’t, in which case you can’t see any of the data and 
you cannot do much meaningful computation on the ciphertext. 
Fully-homomorphic encryption (FHE) enables running an 
arbitrary program on data while it remains encrypted, and 
provides a means to solve all these questions. Revolutionary 

developments in the last decade gave us fully homomorphic 
encryption schemes, harnessing beautiful mathematics from 
lattice-based cryptography. In fact, the rapid pace of research 
in the last decade accomplished great strides in making these 
tools practical. Several grand challenges remain, including 
improving the efficiency to be comparable to conventional 
cryptosystems such as RSA.

Concurrently, new threats to the security of our encryption 
systems continue to emerge. First, hardware attacks such as 
Spectre and Meltdown, aggravated by the remote storage of 
data, force us to harden our encryption systems against ever 
more powerful attacks. Secondly, the possibility of scalable 
quantum computers will render conventional encryption 
schemes, such as RSA, insecure. Can we construct super-
encryption schemes, ones that not only allow us to compute on 
encrypted data, but also provide security against these more 
powerful attacks?

Can we Hide Secrets in Software?
Building obfuscation schemes that are  
provably secure and practically efficient.

Twelve years ago, the game-changing challenge of program 
obfuscation was suggested at this venue, we quote: “Progress 
in research on secure program obfuscation would lead to 
progress on important and long-standing open questions in 
cryptography with numerous applications.” 

The last seven years saw major breakthroughs, including the 
first feasibility result on program obfuscation. This presents 
the tantalizing possibility of masking not just data, but entire 
programs that can be used without anyone figuring out how 
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they work, no matter the attacker’s method. For the first time, 
this gives us hope that we can protect algorithms that are sent 
out into cyberspace. 

Program obfuscation has turned out to be a swiss army knife 
for cryptography, presenting the possibility of building all 
sorts of dream cryptosystems. It enables encryption schemes 
with strong forms of access control, allowing a third party to 
learn functions of encrypted data, but not all of it. It allows 
us to securely patch and update software without revealing 
vulnerabilities, to prevent copyright infringement, to replace 
tamper-proof hardware — like Intel SGX — with software, and to 
secure programs for electronic commerce or national security 
applications that may be executed on insecure computers in 
the future.

Despite this exciting progress, existing obfuscators should 
primarily be viewed as feasibility results; bringing us closer to 
a dream that was previously believed to be unattainable. A lot 
more progress is needed before secure obfuscation becomes a 
practical reality. Moving forward, there are two grand challenges 
for obfuscation:

1.  Can we base the hardness of obfuscation on widely 
studied cryptographic assumptions? For example, 
building obfuscators that are provably unbreakable 
unless someone manages to factor large integers.

2.  How fast can obfuscators run? Existing algorithms will 
need to be made several orders of magnitude faster 
before they can be deployed in practice.

Cryptography as Cartography: Mapping 
the Landscape of Computational Hardness
What can a computer not do? Can we use that  
for cryptography?

The central paradigm in cryptography is to use computational 
hardness of central problems in computer science to 
construct secure systems. This puts us in a unique “win-win” 
situation; breaking the security of these systems would lead 

to interesting advances in other areas. For example, we can 
design encryption schemes that would lead to a breakthrough 
in number theory, the theory of error-correcting codes, or highly 
unexpected machine learning capabilities in the instance of a 
security violation. 

Indeed, such encryption primitives are used in most of our 
interactions every day on the Internet. This being the case, 
developing a thorough understanding of computational 
hardness, both the kind we use today and that which we might 
be able to use tomorrow, is essential to make sure that our 
online banking systems and electronic commerce would still be 
secure even with new breakthroughs in machine learning and 
quantum computing.

In addition, this paradigm also lets us use cryptography to 
explain the difficulty of certain tasks in other areas of computer 
science. On the flip side, we can use cryptography to design 
concrete computational challenges and benchmarks that would 
serve as catalysts for progress in other areas such as quantum 
computing, machine learning algorithms, and verifying the 
correctness of programs. A prominent historical example is 
Shor’s algorithm, which was motivated by the challenge of 
breaking the RSA encryption scheme and resulted in a huge 
interest in quantum computing. 
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A FIRM FOUNDATION FOR PRIVACY 
GROUNDED IN TCS
Reliable methods for balancing privacy and  
utility, replacing ad hoc approaches.

How can we reap the benefits of studying collections of 
large datasets without revealing sensitive information about 
the individuals to whom the data pertains to? This question 
is extremely challenging, as attackers have learned to 
evade current ad hoc defenses in increasingly devastating 
ways to extract sensitive data from seemingly anonymous 
information. Differential privacy came about in 2006 as a 
rigorous mathematical framework to identify what it would 
take for an algorithm to ensure the privacy of individuals 
against *any* attacker.

Over time, the TCS community has developed a strong 
understanding of how to reason about privacy and how to 
measure the accumulation of privacy risk as data is analyzed. 
We can now design very accurate algorithms that guarantee 
privacy for nearly every task from simple statistics to advanced 
ML techniques. Many players in industry and government are 
adopting this approach. The US Census Bureau is using these 
methods for the 2020 decennial census, and large companies 
such as Apple and Google are applying these techniques to 
ensure user privacy.

Publishing Private Data for the  
Public Good
How can we make data accessible for research  
and policymaking without compromising privacy?

Large high-dimensional datasets containing personal information 
are commonly analyzed for multiple reasons. For example, the US 
Census Bureau’s American Community Survey collects detailed 
information from a sample of American households. The results 
are used for major decisions about funding allocation and 
community planning. 

In order to provide the widest accessibility to such data, we 
want to be able to publicly release a synthetic dataset — that is, 
an entirely new dataset that matches the statistical properties 
of the original data without corresponding to the real data of 
any individual. This is the approach used for the 2020 Census. 
Researchers have made great strides in developing synthetic 
data, but many challenges were also discovered.

It is impossible to generate a synthetic dataset that perfectly 
matches the real data. Decisions must be made about what 
kinds of analyses to prioritize and to what accuracy. From there 
stems the questions: Who gets to make these decisions? What 
technical tools are needed to ensure these decisions are aligned 
with society’s goals? How can these decisions be communicated 
transparently? And how do we incorporate outside data sources 
and account for potential statistical biases?

TCS for other domains
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Resolving these challenges would enable deeper analyses 
of private data than what is currently possible, as well as, 
reduce the disparate impact of privacy technologies on small 
subpopulations. In addition, solutions would catalyze advances 
in social sciences, genomics research, epidemiological 
modeling, and any other discipline where individual privacy is 
a major concern.

The Privacy of AI
How to build large-scale AI models while 
preserving your privacy.

Many domains increasingly rely on large and complex AI models, 
but training these models requires massive datasets. In many 
cases, these required datasets contain personal and sensitive 
information: people’s textual data, images and video content 
containing people and even health or financial data. Current AI 
models are known to memorize some of the training data and 
reproduce the information when prompted. The risk of these 
models leaking sensitive personal information from the training 
data is present and real. Moreover, the creation of the training 
datasets in itself creates a privacy risk, often making access 
to these valuable datasets restricted. For example, medical 
records distributed across organizations are currently silo-ed 
for privacy reasons, thus limiting the benefits derived from the 
integration of AI in these domains. Is it possible to mitigate 
privacy risks while realizing the full potential of AI technologies?

The answer to reducing these risks is privacy preserving 
technologies, such as differentially private and cryptographic 
tools, would allow the training algorithms to run without 
collecting data centrally and therefore guaranteeing that 
sensitive details cannot be extracted from the final model. 
Before implementing these tools, a couple of questions need 

to be answered: Can we develop algorithms that can be quickly 
trained to work on complex models and large distributed 
datasets? When is a loss in accuracy unavoidable to preserve 
privacy? And how will the use of these methods affect small 
subpopulations?

Successful resolutions to these questions would give us access 
to larger datasets to train AI models in a safe way that ensures 
privacy. 
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TCS FOR SOCIAL GOOD
Algorithms are increasingly informing decisions deeply 
intertwined in our lives, from news article recommendations to 
criminal sentencing decisions and healthcare diagnostics. This 
progress, however, raises (and is impeded by) a host of concerns 
regarding the societal impact of computation. A prominent 
concern is that these algorithms need to be fair. Unfortunately, 
the hope that automated decision-making might be free of social 
biases is dashed due to the data with which the algorithms are 
trained and the choices made during their construction; left to 
their own devices, algorithms will propagate, or even amplify, 
existing biases in the data, the programmers, and the decisions 
of which features to incorporate and which measurements 
of “fitness” to apply. Addressing wrongful discrimination by 
algorithms is not only mandated by law and by ethics, but 
is essential to maintaining the public trust in the current 
computer-driven revolution.

Over the last decade, CS theory has revolutionized the landscape 
beliefs associated with algorithmic fairness. Many former 
notions of fairness mandate that the “average treatment” of a 
protected set of individuals (defined for example by gender or 
ethnicity) should be similar to that of the general population. 
For example, in the university admissions process statistical 
parity means that the fraction of accepted candidates from a 
protected group will be very close to the fraction of candidates 
from the general population. TCS researchers have shown in 
a sequence of studies that group fairness is easy to abuse; 
that natural group fairness definitions cannot be satisfied 
simultaneously in non-trivial scenarios; and that insisting on 
these definitions may even cause additional unexpected harm. 
While a single notion of fairness is impossible, theoreticians 
have introduced completely new families of definitions which 
allow for a more refined treatment of fairness. These notions 

can govern how individuals, or at least a multitude of groups, 
are treated. The new notions have already had substantial 
intellectual and practical impact.

The Theory of Algorithmic Fairness
Algorithms make decisions about us. We want 
these decisions to be fair and just.

Society-facing automated decision systems have to perform 
a delicate balancing act. These systems need to be “good” 
at making decisions while simultaneously being fair and 
preventing discrimination against protected population 
subgroups. The theoretical computer science community has 
investigated these problems for nearly a decade.  

Fairness is contextual; who should be treated similarly to whom 
depends on the task. One approach to algorithmic fairness 
separates the specification of fairness from the task of ensuring 
fairness is achieved. This places enormous burden on the 
specification, and allows a wide range of mathematical tools for 
achieving the task. The field has recently seen tantalizing socio-
technical approaches to the specification problem. 

By capturing unfairness, instead of fairness, the field can make 
progress as breaches in fairness are addressed. Here, however, 
theoretical investigation reveals an interesting phenomenon; 
several different types of statistical unfairness cannot be 
ruled out simultaneously. These kinds of mathematical limits 
focus research on articulating ambitious but achievable goals. 
This active area of research has produced gems with deep 
connections to the established fields of forecasting and regret 
minimization. Other investigations are more structural: Are 
systems composed of fair parts fair as a whole? Can properties 
of fairness be generalized? And is it better or worse, from a 
fairness perspective, to censor sensitive attributes in a dataset? 
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Many societal biases are systemic; as a result the ways 
in which individuals are presented to an algorithm can be 
problematic. The selection of variables, outcome proxies, and 
objective functions, do not treat similar individuals the same. 
The study of how to evaluate the risks, guarantees, and trade-
offs associated with notions of fairness in algorithms is just 
beginning.

Fair Resource Allocation
In a truly ethical society, how to be fair to  
all is the question. 

Whether it is distributing tax money, network access, school 
seats, satellites, defense resources or air traffic management, 
mechanisms that enable participants to come to a mutually 
agreeable allocation of resources are essential to the functionality 
of society. Fair division of resources has become a major field 
of study in computer science, mathematics, economics and 
political science. The domain seeks to answer whether provably 
fair outcomes exist in a wide variety of problems and how we 
can compute them. Computer science researchers have led the 
charge in making fair division possible at scale in environments 
with multitudes of participants, thereby bringing fair division to 
the masses. Important challenges in regards to even stronger 
notions of fairness still lie ahead: How can we divide goods 
that cannot be evenly divided in a manner that ensures no 
individual envies another’s allocation? How can we define and 
impose fair division when the participants may lie about their 
preferences? And how can centralized allocation tools facilitate 
human interactions in a way that leads to fairer outcomes? 
The theory of fair resource distribution can provide allocations 
that are guaranteed to be fair in many applications of societal 
importance. For example, these methods are currently used for 
kidney exchanges, school seat assignments, dividing donations 
among food banks, inheritance division, divorce settlements, 
and splitting jointly purchased goods between friends.

Auditing Algorithms
Telling fact from fiction in a world  
dominated by algorithms.

Algorithms unleashed on a growing body of data are able 
to produce claims at an ever-increasing rate. For example, a 
machine learning algorithm applied to a medical record data 
set will be able to produce billions of credible-looking medical 

hypotheses. How can the scientific community independently 
verify these hypotheses?

We can describe how we want decision making systems to be 
fair, or nondiscriminatory, or avoid being biased. We can even 
design algorithms that satisfy all of these properties. But how 
do we make sure that systems we cannot directly inspect 
are trustworthy? We must have a way to audit systems that 
provide guarantees or certificates of trustworthiness. 

To do this we have to address two challenges. First, the power 
asymmetry: the systems we want to audit are usually black 
boxes under the control of an untrusted third party with limited 
access for auditors. Second, the nature of the question to be 
asked: rather than trying to check if the system gives us correct 
answers, we want to find out whether the system is giving us 
fair or unbiased answers. 

TCS is well placed to address the question of power: in areas 
ranging from interactive proofs to private information retrieval 
and the very architecture of distributed, private and secure 
computation, the framework of powerful demonstrators and 
weak verifiers show that we can solve surprisingly hard 
problems without full access to the system we are querying. 
The harder challenge lies in the distributional nature of the 
properties we wish to verify, whether it be a certificate of 
individual fairness, demographic parity, or other criteria that 
we wish to test for. 

Diving deeper into this area of research will allow us to draw 
a better picture of what is possible and what is not. Such a 
direction will (and must) inform the larger legal and regulatory 
frameworks that are put in place for validating algorithmic 
decision systems. 

Algorithmic Foundations of Participatory 
Decision Making
Democracy needs more participation.  
Participation needs better algorithms.

Although the world today is very different than it was a few 
decades ago, the practice of democracy hasn’t fundamentally 
changed in centuries. To revitalize democracy, it is commonly 
believed that a higher degree of citizen participation is needed. 
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Theoretical computer science continues to play a major role in 
facilitating participation in a way that is representative and 
fair. In particular, local and national governments around the 
world are already eliciting and aggregating citizen preferences 
in order to select public projects to fund. TCS approaches seek 
to answer whether it is possible to compute outcomes that are 
guaranteed to be satisfactory to every possible group. 

Similarly, randomly-selected citizens’ panels that debate policy 
questions became commonplace in recent years. Issues of 
self-selection of volunteers and lack of fair representation on 
these panels can skew results and create bias threatening 
these democractic systems. The questions we must ask are: 
How can these panels be constructed in a way that is fair to 
volunteers, representative of the population, and transparent? 
And how can algorithms help panelists deliberate and reach 
a consensus? Theoretical computer science has the ability to 
ensure the fairness and representation of these systems and 
shape the future of democracy. 
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AN ALGORITHMIC APPROACH TO 
ECONOMIC SYSTEMS
Algorithms and automated decision making have gradually 
permeated all levels of the U.S. economy. On the one hand, 
consider the daily decisions we make as consumers: How do 
you get to your next appointment – hail a taxi, share a ride, or 
rent a bike? What coffee machine should you buy? When you 
travel, where do you stay, where do you eat, and what do you 
do for fun? Increasingly, each of these decisions is made with 
both explicit and implicit direction from platform marketplaces 
run by firms such as Uber, Amazon, LinkedIn, Google, Facebook, 
and others. Individually, many of these marketplaces are large; 
in aggregate, their impact on the economy and on the shape of 
modern society is immense. On the other hand, institutions at 
the topmost levels of the economy have grappled with growing 
complexities by resorting to algorithmic approaches — from 
algorithmic trading in financial markets to large-scale Federal 
Communications Commission (FCC) spectrum auctions to barter 
markets for organ donation. 

Traditionally, economic fields such as auction theory, contract 
theory, market design, and information design provided the 
principles that guide the configuration of economic markets 
and institutions. These foundations were recognized with 
Nobel Prizes in 2007 and 2020 for auction theory; in 2012 for 
market design; and in 2016 for contract theory. Yet, the theories 
they propose do not always scale well to the combinatorial 
complexities presented by modern markets, severely limiting 
their continued practical influence. TCS has stepped into this 
space to provide new economic theories built on a sound 
computational foundation. 

Platform Markets & Auctions at  
Global Scale
Who gets what and for how much — on  
the Internet?

Auctions are not new, but fielding billions of interdependent 
auctions — run and monitored automatically — in complex 
environments is. TCS provides direct guidance on eliciting 
bids from participants along with pricing and allocating items. 
Online advertising, which is the main source of revenue for 
the big tech companies such as Google and Facebook, traces 
its lineage back to classical problems studied in TCS such as 
the online bipartite matching problem. Dynamic markets that 
match riders with drivers or bikes — that appear, disappear, and 
re-appear — at “NYC-scale” are guided toward efficient global 
solutions, all while making local decisions within seconds. In 
addition, applications such as Youtube and Spotify rely on core 
techniques in combinatorial optimization and learning theory 
to facilitate the fair representation of content creators in a 
diverse slate recommended to users. Indeed, TCS has even 
touched markets that operate without money, helping to build 
out barter markets for organs in the US and worldwide as well 
as matching markets for blood donation and charitable giving. 

In the past decade, the TCS community made simplifying 
assumptions that allowed the field to make analytic progress, 
using these strong-but-simple models to help guide policy. The 
next step is understanding how to relax these assumptions to 
better capture the full reality of complex, decentralized, online 
marketplaces with strategic participants. What algorithms lead 
to good equilibria when all the participants are independently 
solving an online allocation problem for themselves? How does 
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competition between different multi-sided platforms impact 
global social welfare, in both the short- and long-term? As 
platform markets continue to drive large parts of the online 
economy, these complexities will have growing implications for 
our society. Our push for the coming decade will be to provide 
a strong theoretical understanding of the dynamics of this 
complex environment.

Optimization Drives the Sharing Economy
Everyone now runs their own bus company.

While using a shared bike system to get around a city, we usually 
don’t think about the planning and operational decisions that 
make the system run smoothly. For example, how do we ensure 
that there are enough bikes at each station for people to borrow 
and enough free slots so that people can also drop the bikes 
back off? The enormous number of users, and the uncertainty 
about when and where they want to pick up and drop off bikes, 
makes this an optimization problem of unprecedented scale. 
Similar challenges arise in delivering meals-on-wheels to needy 
families, or in matching ride-sharing cars to users: all these 
are systems that solve problems in real time, on-the-fly, and at 
huge scales.

These examples show how the sharing (digital) economy has 
given rise to challenging problems in resource management, 
logistics, and customer service. For many years TCS researchers 
have developed state-of-the-art methods to solve such 
problems, contributing to numerous success stories such as 
the AdWords systems. However, the diversity of these problems 
and the greater uncertainty means we need new formulations 
to model their practical difficulties. Research on the foundations 
of optimization algorithms will guide this work in two key ways. 
Firstly, it will provide abstractions to capture fundamental 
questions that span a range of applications within a common 
setting. Secondly, it will help answer these algorithmic 
questions by generating tools that guide the design, planning, 
and operational decisions. Both the underlying abstractions and 
the algorithmic tools can be used for other applications, some 
that are currently known, and many that are yet unanticipated. 

Economic Foundations for an  
Algorithmic World
Computer algorithms are evolving rapidly:  
Can economic institutions keep up?

As computing becomes increasingly commodified, economic 
institutions are becoming increasingly algorithmic. Algorithmic 
trading is pervasive in financial markets. More and more people 
are finding work in a diverse range of fields through algorithmic 
platforms such as AirBnB, Uber/Lyft, and Mechanical Turk. 
Even within traditional firms, algorithmic hiring is a growing 
trend. Importantly, participants’ behavior in these institutions 
is traditionally regulated (e.g., discriminatory hiring practices 
are illegal) in order to benefit society. When the participants 
are algorithms, however, regulation becomes problematic, 
or perhaps even intractable. One key example is algorithmic 
exploitation of arbitrage opportunities. Already, difficult-to-
regulate algorithmic traders extract rents from financial markets 
by exploiting arbitrage opportunities before humans can even 
detect their existence. Imagine further algorithmic exploitation 
of tax loopholes, or algorithmic market manipulation in ride-
sharing platforms — which are not far on the horizon. 

On Page 29 we discussed approaches for auditing algorithms. 
Here we discuss an alternative approach that can supplement 
or supplant auditing — designing institutions to be resilient 
to or even benefit from participants’ self-interested behavior. 
This approach fundamentally rethinks the design of economic 
institutions in two ways: first, modern markets should take 
advantage of (rather than collapse under the weight of) new 
state-of-the-art algorithms with heuristic, but not guaranteed, 
performance. Second, market regulation must have built-in 
robustness against algorithmic sophistication “growing with 
the state-of-the-art” built into them — otherwise, algorithmically 
sophisticated participants will be able to exploit other 
participants and the institution without providing any value in 
return.

These properties can be formalized through the TCS concept 
of Price of Anarchy, which measures the impact of strategic 
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behavior on society’s welfare within a system. Since its 
inception two decades ago, the Price of Anarchy has been a 
successful lens to study Internet routing protocols. Over the 
past decade, the paradigm has invaded other domains, such as 
auction design. The goal for the next decade is to influence an 
increasingly broader range of fields, and provide a rich theory 
to guide the design of economic institutions for strategic 
algorithmic participants. 
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