
Catalyzing Computing Podcast Episode 15 - Interview with
Melanie Mitchell Part 1

The transcript below is lightly edited for readability. Listen to “Interview with Melanie
Mitchell Part 1” here.

Intro - 00:10 1
Moving to Computer Science from Physics and Astronomy - 1:13 2
Copycat and AI Understanding Analogy - 10:20 6
Outro - 23:45 13

[Intro - 00:10]

Khari: Hello, I'm your host, Khari Douglas, and welcome to Catalyzing Computing,

the official podcast of the Computing Community Consortium. The Computing

Community Consortium, or CCC for short, is a programmatic committee of the

Computing Research Association. The mission of the CCC is to catalyze the

computing research community and enable the pursuit of innovative, high-impact

research.

In this episode of Catalyzing Computing, I sit down with Melanie Mitchell. Melanie

recently joined the CCC Council and is a Professor of Computer Science at

Portland State University, as well as an External Professor, a member of the

Science Board at the Santa Fe Institute. She is the author and editor of five books

and over 80 scholarly papers in the fields of artificial intelligence, cognitive

science and complex systems. Her most recent book is Complexity: A Guided

Tour won the 2010 Phi Beta Kappa Science Book Award.

In this episode we discuss her move to AI from physics and astronomy; getting a

PhD in Computer Science at the University of Michigan; and the creation of

https://cra.org/ccc/podcast/#episode15
https://cra.org/ccc/khari-douglas/
https://cra.org/ccc/
https://cra.org/ccc/
https://cra.org/
https://www.pdx.edu/faculty-experts/expert/melanie-mitchell
https://cra.org/ccc/about/ccc-council-members/
https://www.pdx.edu
https://www.santafe.edu/
https://www.amazon.com/Complexity-Guided-Tour-Melanie-Mitchell/dp/0199798109
https://www.amazon.com/Complexity-Guided-Tour-Melanie-Mitchell/dp/0199798109
https://www.pbk.org/Awards/BookAwards/ScienceWinners
https://umich.edu


Copycat, a computer program that could build psychologically realistic

analogies; as well as common AI fallacies. Enjoy.

[Moving to Computer Science from Physics and Astronomy - 1:13]

Khari: You’re listening to Catalyzing Computing here with Melanie Mitchell.

Melanie, how are you doing today?

Melanie: I'm doing very well, thanks.

Khari: So can you tell us a little bit about your background? Where did you grow

up and how did you get involved with computer science?

Melanie: I grew up in Los Angeles, that's where I was born. Then I went to college at

Brown University in Providence, Rhode Island, and studied physics, astronomy and

mathematics there, not computer science at all. But my work in astronomy was what

really got me into computer science because I learned how to program in order to do

data analysis in astronomy, and that kind of led me to an interest in programming and

then an interest in, specifically, artificial intelligence. That was spurred by reading

Douglas Hofstadter's book Gödel, Escher, Bach, which I read back in the ‘80s when I

was in college. It got me really interested in the question of how intelligent can we make

computers? How do we get them to sort of analyze their own data, if you will?

Khari: Okay, that's interesting. I think you're actually the second person to

mention getting into computer science because of reading Gödel, Escher, Bach. I

think Suresh [Venkatasubramanian] also brought that up [Listen to his podcast

interviews here].

Melanie: Oh, yeah. I think a lot of people were very inspired by that book.

https://www.researchgate.net/publication/243649607_The_copycat_project_A_model_of_mental_fluidity_and_analogy-making
https://www.brown.edu
https://cogs.sitehost.iu.edu/people/profile.php?u=dughof
https://www.amazon.com/G%C3%B6del-Escher-Bach-Eternal-Golden/dp/0465026567
https://cra.org/ccc/suresh-venkatasubramanian/
https://cra.org/ccc/podcast/#episode2


Khari: So what aspects of computer science did you use in physics?

Melanie: Well, really a lot of statistics, and it was really quite basic data analysis that I

did when I was studying astronomy. In particular, I had an internship studying variable

stars — we were looking at the periods of variable stars and trying to do various data

analysis techniques on those. So that's what got me into programming because I started

programming my own tools to do some of these analysis, but it was a very basic kind of

programming and I didn't really get into more serious programming until I started

working in AI

Khari: Okay. So what specifically was the move away from physics to working in

AI strictly?

Melanie: Well, to be honest, when I was growing up I felt like I had this big interest in

physics, cosmology, astronomy, but once I actually started working in that field in

various internships, I realized that most of it was really just computing. I wasn't looking

through telescopes very much. I was looking at big data files running programs on them,

and so it didn't seem as interesting to me in the actual practice of working on it than it

did in theory. Then I kind of drifted over to actually studying computer science. I was

one of those people who never had taken courses in computer science in college and

didn't get into it until after college and then ended up going to graduate school in the

field. At that time you could do that. I'm sure that's a little harder now.

Khari: Yeah, it might be more difficult. So you got your PhD from the University of

Michigan?

Melanie: That's right.



Khari: Do you have any interesting stories or anything from your time spent

there?

Melanie: I think Michigan was one of the first universities to offer graduate degrees or

any kind of degrees in computer science, back in, I think, the 1950s, I'm not sure. So

they had an interesting history in Computer Science. John Holland, who was one of my

co-advisors, was their first PhD in computer science from University of Michigan. His

advisor was Art Burks, who actually worked with Von Neumann a long time ago, so he

was like a real pioneer of computing. But the view of Burks and Holland and some of the

original computer science people at Michigan was very broad. It was like computer

science kind of writ large across nature, that computing was a concept that not only took

place in computers, but took place in natural systems. And we should think about

information processing and computing as a kind of general framework to think about

nature.

That was still in force by the time I got there. Holland taught this course called

“Adaptation in Natural and Artificial Systems.” That was kind of his topic of study. I don't

know if you know Holland, but he was the originator of genetic algorithms. So he was

really interested in computing in a very broad sense. At the time I got there, computer

science was moving from the liberal arts college to the engineering college. In fact, it

moved there a couple years after I got to Michigan. So it was really in a period of flux

where computer science was trying to figure out what its true home was. And there

were a lot of debates about that. I think it was a real incubator of some very forward

looking ideas about computer science and also sort of the site of a lot of fierce

arguments about what the place of computer science was in the academic world. So it

was a really interesting place to be.

Khari: Interesting. We'll come back to discuss genetic algorithms more, but I'm

sort of curious. You said that computer science was sort of moving from liberal

https://lsa.umich.edu/cscs/news-events/all-news/archived-news/2015/08/internationally-eminent-professor-john-holland-passes-away-at-ag.html
https://en.wikipedia.org/wiki/Arthur_Burks
https://www.ias.edu/von-neumann
https://en.wikipedia.org/wiki/Genetic_algorithm


arts to engineering. And, I think, a lot of computer science departments now are

in engineering schools, if that's something the school offers.

What do you think of that as a trend? Do you think computer science should align

more closely with engineering or with liberal arts?

Melanie: Yeah, that's a really interesting question. I think there's always a tension in

computer science about what is computer science exactly? Is it a science? Or is it an

engineering field? That's a constant question and, obviously, it can be both. I think the

people who come out of computer science departments that are more aligned with sort

of science and mathematics versus engineering just have a different kind of

philosophical view of the field.

I'm not a big fan of carving the world up into these strict disciplines and I think computer

science is a really nice example of a very interdisciplinary field in that it can be very

accepting of lots of different possible ways of thinking, sort of engineering-oriented or

scientific-oriented or theoretical-mathematical. In practice, sometimes that makes things

difficult. In my own experience with my PhD, my committee consisted of both computer

scientists and psychologists because I was sort of working in more cognitive science.

The computer scientists, some of them were saying, “Why is this computer science?”

And the psychologists were saying, “Why is this psychology?” It was an interesting

tension. I think that tension still remains. But I see the field as becoming more and more

open, kind of returning to some of its earlier inspirations from natural systems. People

are getting more interested in natural inspirations for computer science. But obviously,

that depends on what part of the field you come from.

Khari: Right. Yeah, it definitely seems like the interdisciplinary aspect of

computer science is increasingly important.



Melanie: It absolutely started out that way, as a very interdisciplinary topic. But, you

know, these academic fields tend to evolve.

Khari: Do you think computer science is sort of moving back towards being more

interdisciplinary and connecting more with other fields, not just strictly from the

technical side of things?

Melanie: Yeah, I think it's definitely becoming more interdisciplinary as more and more

people from different fields start using the tools of computer science and getting more

involved. I see it in my own students: they're much more interested in many different

disciplines and see that computer science, that thinking about the world in the

framework of computing is actually very valuable for many fields. I think it was

Jeannette Wing who introduced the idea of “computational thinking.” That's kind of a

buzzword, but I think that it is a really deep idea: that you think about, not just

computation and computers, but also just the whole framework of computational

thinking as an important addition to the conceptual tool set in many fields.

Khari: Yeah, I think you do see this on the other side, too, like in terms of data

journalism and things like that. Keith Marzullo talked a lot about that [Listen to his

podcast interview here]. He's the Dean of the University of Maryland's iSchool. So

that's sort of the opposite flow of interdisciplinary work.

[Copycat and AI Understanding Analogy - 10:20]

So while you're at Michigan, you did your dissertation on Copycat, correct?

Melanie: That's correct.

Khari: With Douglas Hofstadter. Did I pronounce that right?

https://datascience.columbia.edu/director-jeannette-wing
https://www.cs.cmu.edu/~15110-s13/Wing06-ct.pdf
https://www.datacamp.com/community/blog/data-journalism-guide-tools
https://www.datacamp.com/community/blog/data-journalism-guide-tools
https://ischool.umd.edu/about/directory/keith-marzullo
https://cra.org/ccc/podcast/#episode7
https://ischool.umd.edu
https://www.researchgate.net/publication/243649607_The_copycat_project_A_model_of_mental_fluidity_and_analogy-making


Melanie: Hofstadter, yes. So he was the author of the book that really got me into AI,

and after I read his book I sought him out and told him I wanted to work with him. So he

took me on as a graduate student and I did my dissertation with him as my advisor and

John Holland as my co-advisor.

Khari: Ok. Copycat is a “computer program designed to be able to discover

insightful analogies and do so in a psychologically realistic way.” So what does

that mean?

Melanie: Right. So I mentioned that my work was sort of at the border of computer

science and cognitive science. Analogy, that is being able to look at a particular

situation as being essentially the same as another possibly different situation, that's

really fundamental to all of our cognition. And, obviously, if you're going to get AI

systems to be able to think like humans and to be robust outside of their training regime,

you're going to have to enable them to make analogies.

My work was on testing out some ideas that were originated by my advisor, Hofstadter,

by building a computer model of analogy making and testing it on an idealized domain

of analogies that consisted of analogies between letter strings. An example might be,

take a letter string “ABC,” change it to “ABD,” now make the analogous change to “p p q

q r r s s.” This sounds very simple, but actually this domain captured a lot of really

interesting phenomena in human analogy making. This idea of recognizing patterns in

these idealized situations and events and the salient sort of similarities is still something

that's an open problem in AI. So I built a program that could solve these kinds of

analogies in, what we felt was, a human-like way. And we tested it against

humans—that was the psychology part of my studies where I actually did studies on

humans—and found that it indeed, sort of, matched to what humans were doing to

some extent. It was a very open ended problem, but it used an approach that really, I

think, is still relevant. And the work I'm doing now is inspired by that work.



Khari: Ok, so when you say “similar to human.”...In the example you gave “ABC”

to “ABD” and then it was “p p…”

Melanie: “p p q q r r s s.” Yes. So what's the change? What's the analogous change?

Khari: My guess would be to change the double S to double T, maybe. Moving the

last group up one letter of the alphabet or something like that.

Melanie: Right. You're observing a change. “ABC” changes to “ABD,” so you describe

that in some way and then you apply that description to a different string. And it's not

exactly the same there's some changes, and so you have to allow some of your

representation of the first set of events to adapt to the new string, to the new situation.

The question is, how do you do that? My program could take in any string that changes

to any other string, you could give it any possible set of three letter strings and it would

try and find the analogy. It wasn't always successful, but it was general in that sense,

that it tried to apply the knowledge it had in a flexible way from one situation to a new

situation.

Khari: Ok. So how exactly did you do that? I know in the paper, you list three

major components: the slipnet, the workspace, and the code rack. What is each

one of those?

Melanie: So it would probably take a while to explain in detail, but let me just try and

summarize it.

[Laughter]

So if you think about the way that you perceive a new situation, say you're looking out:

your eyes move around, taking in different parts of the situation. I'll take my example of

“ABC,” I notice that A and B are connected by a relationship. B is the successor of A



and that's some knowledge I happen to have in my store of knowledge. Then that gives

me some feedback to say, maybe that kind of relationship is relevant here. So I try to

apply it elsewhere. And there's this continual feedback between what you're perceiving,

what you're expecting, and things that you already know. So we tried to implement this

interactive architecture where your prior knowledge is continually interacting with your

perceptual process, and it's a dynamic process so you're getting feedback all the time.

You're trying to build a representation of the situation that you're faced with and trying to

adapt that representation to a new situation.

Contrast that with a typical neural network somebody might use to classify a particular

example. Most of the time, neural networks are completely feed forward, there's no

feedback. Sometimes people use recurrent neural networks where there's a little bit of

feedback, but the architecture we were looking at was, I think, more sort of cognitive in

the sense that there was this continual dynamic feedback between the higher level

knowledge and the lower level perception. That's what allowed the system to kind of

zero in very quickly on what was relevant, what the relevant similarities were and what

the appropriate representation should be. That's a really short account of what we did. It

would take a long time to explain the whole system. But I think that's kind of the

fundamental idea is this continual dynamic feedback between higher level knowledge

and lower level perception.

Khari: Okay. So you contrasted this with how most neural networks work. Do you

think a system like Copycat will be valuable in newer AI systems in ways that

neural networks are?

Melanie: Yeah. That's the work I'm doing now is trying to use some of those ideas, in

which high level knowledge representation interacts with a lower level perceptual

system based on neural networks. I do think it's going to be valuable. And I think most

people in AI these days are looking for something a little bit new, that’s not just built on

sort of end to end feed forward neural networks. That there has to be some more



cognitive style knowledge representation that interacts with neural networks that will

make it more able to deal robustly with the situations that they encounter.

Khari: Right, okay. So you sort of mentioned some of the problems that neural

networks have and I watched a video of a presentation you did where you

discussed four AI fallacies — I should have written those down in case you don't

remember — but do you know what those were and what the problems are with

those?

Melanie: Yeah, let me see if I can remember. So this is kind of a more non-technical

lecture on AI that I gave. The first one was that success in narrow tasks is on a

trajectory to success in general tasks. One of the things that has been true of AI

throughout its history is that AI systems can do really well on specific, narrow tasks that

they're trained for. You might think of things like speech recognition or playing the game

of chess or recognizing objects and images. But none of these systems can do anything

outside the task that they were trained for, and this is sort of the definition of narrow

versus general AI. Whereas, you know, we humans, for example, can apply the

knowledge that we learned in recognizing a particular kind of set of objects to

recognizing them in many different kinds of situations.

Neural networks have done some amazing things, they don't yet have the generality

and robustness that we humans have in our perceptual and cognitive abilities. So the

question is, if we can keep training neural networks for more and more narrow tasks,

can we somehow put that all together to make general AI? I was questioning that

assumption that a big heap of narrow intelligences may not translate into a general

intelligence. Okay, so that was one fallacy. The philosopher Hubert Dreyfus said that, if

you climb a tree and say you're closer to getting to the moon, you're sadly mistaken.

What you have to do is come down from the tree and get on a rocket ship.

Khari: Right.

https://www.youtube.com/watch?v=4QBvSVYotVc
https://en.wikipedia.org/wiki/Hubert_Dreyfus


Melanie: That may be what the state of AI is right now.

Khari: So this is where something like Copycat could come into play? Sort of

giving you that broader underlying strata to understanding things in not such a

narrow way?

Melanie: Yeah, exactly.

Another fallacy, that I think is more from the point of view of the public watching AI, is

what I called “names confer abilities.” The idea is that we call our data sets things like

“common sense reasoning” or “reading comprehension” or “understanding”; and then

we have some particular benchmark for, say, reading comprehension. We say, “Oh, our

system has outperformed humans in reading comprehension.”

Well, actually, the data set, even though it's called reading comprehension, really isn't

about reading comprehension, it tests something else. But then what gets reported in

the media is that computers are better than humans at reading comprehension. I think

this is something that's been a big problem in the field, in communicating what the state

of the field is, and it confuses people. So that was another fallacy.

Khari: Do you remember the last two?

Melanie: One of them was that “easy things are easy and hard things are hard.” I kind of

phrased these to be provocative, but the idea here was that for a long time people in the

field thought that the things that were hardest for humans would also be hardest for

computers, like beating a grandmaster at chess or playing Go better than any Go

master in the world. It turns out that those things we've now accomplished with

computers, but we haven't accomplished all the things that are in some sense the

easiest for humans. Things such as learning to speak in natural language,



communicating natural language, learning to describe what we see visually — things

that two or three year old children can do — are things that computers find the most

challenging.

In fact, it's interesting, there's a DARPA program now that's getting a lot of funding

called Foundations of Common Sense. The goal of this program is to create a machine

that has the same kind of developmental abilities as an 18-month-old baby. This may be

really confusing to people because, you know, haven't we gotten computers that can

beat anyone at chess and Go, that can do all kinds of amazing things, can navigate us

through challenging terrain, and so on? How can we be trying to create a computer that

has the intelligence of an 18-month-old?

[Laughter]

Isn't that a paradox? It's an interesting paradox.

The things that are, sort of, really easy for humans tend to be surprisingly challenging

for computers. There was a quote from Alan Turing, a famous AI researcher that said

something like, anything that a human brain can do in less than a second will be

accomplished by computers very soon. I'm quoting it wrong, but that was kind of the

idea/ That was an example of the fallacy that things that are easy for us, are going to be

easy for computers, and I think that's actually exactly the opposite of what's true.

Khari: Do you remember what the last fallacy was?

[Laughter]

Melanie: You're putting me on the spot here. The last fallacy… Let's see. I'd have to

look it up. Sorry.

https://www.darpa.mil
https://www.darpa.mil/program/machine-common-sense


Khari: No problem. I should've written it down. But, yeah, those are all interesting

points.

[Outro - 23:45]

Khari: That's it for today's podcast. I hope you enjoyed it. Tune in next week

where I continue my interview with Dr. Melanie Mitchell. In that episode we

discuss genetic algorithms, complexity science, and the art of writing a book.

Until next time, peace.

https://cra.org/ccc/podcast/#episode16

