

Challenges in Assured Autonomy for Self-driving Cars

Eric M. Wolff
Principal Research Scientist
Motional Autonomy Research

Why is programming a self-driving car hard?

- Sense
 - "See" with cameras, lidar, and radar
 - High-dimensional input (pixels + pointclouds), occlusions, so many types of objects
- Plan
- Act

Why is programming a self-driving car hard?

Sense

- "See" with cameras, lidar, and radar
- High-dimensional input (pixels + pointclouds), occlusions, so many types of objects

Plan

- Behavior depends on the scene context
 - Other cars, pedestrians, bicyclists, etc
 - Road geometry and markings (e.g., bus stops, stop signs)
- Need to anticipate what others will do
- Rules-of-the-road are not complete or followed

Act

Need to drive smoothly and comfortably

Machine Learning is a key component of self-driving cars

- When to use ML?
 - Lots of data
 - Stable data distribution
 - No good analytical model

Machine Learning is a key component of self-driving cars

- When to use MI?
 - Lots of data
 - Stable data distribution
 - No good analytical model

A. Lang et al. "PointPillars: Fast Encoders for Object Detection from Point Clouds." CVPR 2019 https://arxiv.org/abs/1812.05784

- Where is ML typically used in self-driving cars?
 - Perception (heavily)
 - Motion prediction (moderately)
 - Planning (partially)

T. Phan et al. "CoverNet: Multimodal Behavior Prediction using Trajectory Sets." CVPR 2019. https://arxiv.org/abs/1911.10298

How to assure safety of ML systems?

- There is no silver bullet
- A key challenge is rare events (the long tail)

How to assure safety of ML systems?

- There is no silver bullet
- A key challenge is rare events (the long tail)
- Safety certification of ML systems
 - Compute (easy)
 - Data pipeline (med)
 - Model (hard)
 - Meets performance targets across a comprehensive test set
 - Non-ML safety checks and limits
 - Within operating domain?
 - Uncertainty estimates

How to assure safety of ML systems?

- There is no silver bullet
- A key challenge is rare events (the long tail)
- Safety certification of ML systems
 - Compute (easy)
 - Data pipeline (med)
 - Model (hard)
 - Meets performance targets across a comprehensive test set
 - Non-ML safety checks and limits
 - Within operating domain?
 - Uncertainty estimates
- Shared data and evaluation across the industry?
 - Eval and metrics must be carefully determined
 - Research: <u>www.nuscenes.org</u>, <u>www.argoverse.org</u>, <u>www.waymo.com/open</u>
 - Safety
 - www.pegasusprojekt.de/en/
 - <u>hwww.safetypool.ai/</u>

How to convince the public?

- Multiple stakeholders
 - Users
 - Other road users
 - Local, state, and federal government
- Safety is not apparent from a test drive
- Can we adapt current auto regulations? Or look to aerospace?

Conclusions

- Machine Learning is a core part of self-driving cars
 - Perception
 - Prediction
 - Planning
- How to assure safety of an ML system?
 - A grand challenge
 - Compute, data pipeline, and model
 - Comprehensive evaluation and data sharing

