ASSURED AUTONOMY FOR DISASTER MANAGEMENT

Dr. Robin R. Murphy **Professor, Computer Science & Engineering** Texas A&M AAAS, ACM, IEEE Fellow

Center for Robot-Assisted Search & Rescue (nonprofit)

@crasar robin.r.murphy@tamu.edu @robinRmurphy

(Robin) Murphy's Law of Autonomy: a deployment of robotic systems will fall short of the target level of autonomy

Woods, Tittle, Feil, Roesler IEEE TSMC-C 2004

Champlain Towers Collapse, Surfside, FL

Disaster Environments are Extreme

- Unexpected environments and environmental interactions at the design boundaries
 - Which simulations tend to miss
 - Sensors and wireless behavior is hard to simulate
 - Simulations favor task rehearsal for the "expected unexpected"
 - People fail to imagine or handle >3 variables or
 transitions/steps in a sequence (Klein 1999)
 - Neglect impact on overall work processes

Extreme Environments Are Hard

- Unexpected environments and environmental interactions at the design boundaries
 - Which simulations tend to miss
 - Sensors and wireless behavior is hard to simulate
 - Simulations favor task rehearsal for the "expected unexpected"
 - People fail to imagine or handle >3 variables or
 transitions/steps in a sequence (Klein 1999)
 - Neglect impact on overall work processes
 - Which probabilistic methods minimize

nttps://liveindex.org/26133/2016/07/what-exactly-is-a-black-swan-even

Extreme Environments Are Hard on People

- Unexpected environments and environmental interactions at the design boundaries
- Humans can't seamlessly take over if robot fails
 - Heightened cognitive demands
 - High operational tempo
 - Human out-of-the-loop (OOTL) control hand-off problem

https://society6.com/product/i-cant-adult-today-sad-robot print

Disasters Require Focus

- Unexpected environments and environmental interactions at the design boundaries
- Humans can't seamlessly take over if robot fails
- Users don't care about explanations from explainable AI unless requested and succinctly help with decision making

https://carwarninglights.net/warning-light/check-engine-ligh

Now? Next 10 minutes? Next 30 miles? Slow down and don't try to pass other cars and go up hills?

How Do Responders Decide to Use AI Technology?

Demand Pull, not innovation push

High Suitability
assured operation for the
expected and expected
unexpected- both in terms
of V&V and work processes
(extra work or support staff,
wireless, training)

Low Risk

Clear understanding of the worst that can happen and work-arounds

(More) Assured Autonomy Research Priorities

- More focus on effective design and test methods that incorporate external factors (e.g., complex environment and work processes)
- More work on evidential reasoning, not simple Bayesian probability, especially as to mission success
- New methods for cognitive work domain analysis for formative applications in order to project vulnerabilities and head off the Substitution Myth