Decision-Aware Reinforcement Learning

Hamsa Bastani
Wharton School, University of Pennsylvania

Joint work with
Osbert Bastani, Angel Chung, Vahid Rostami, Johnna Sundberg, Musa Komeh, Ashley Schmidt & Lawrence Sandi
Learning and Optimization

- **Goal:** Given response y (e.g., today’s demand), compute decision z (e.g., inventory to order) to minimize a known decision loss ℓ:

 $$z^*(y) = \arg\min_z \ell(z; y)$$

- **Problem:** Optimization parameters y are unknown

- **Strategy:** Predict y based on covariates x (e.g., yesterday’s demand)
 - For problems with state, equivalent to model-based offline RL
Learning and Optimization

• **Training phase:** Given examples \(\{(x_i, y_i^*)\} \), train a function \(f_\theta \) to predict \(y \) given \(x \):

\[
\hat{\theta} = \arg \min_\theta \sum_i \tilde{\ell}(f_\theta(x_i); y_i^*)
\]

• **Testing phase:** Given a new \(x \), form prediction \(f_\theta(x) \) (“predict”) and choose decision \(z^*(\hat{y}) \) (“optimize”)

• **Key question:** What prediction loss \(\tilde{\ell}(\hat{y}; y^*) \) to use in training?
Learning and Optimization

• **Decision-blind prediction loss:** Use a standard loss such as MSE:
 \[\tilde{\ell}_{\text{MSE}}(\hat{y}; y^*) = (\hat{y} - y^*)^2 \]

• **Decision-aware prediction loss:** Use the decision loss
 \[\tilde{\ell}(\hat{y}; y^*) = \ell(z^*(\hat{y}); y^*) = \ell(\arg\min_z \ell(z; \hat{y}); y^*) \]

• **Problem:** How to compute \(\tilde{\ell} \)?
Prior Work

• [Elmachtoub & Grigas (2021)] Approximate decision-aware prediction loss $\tilde{\ell}$ in the case where:
 • Decision loss ℓ is a linear program
 • Learning restricted to objective (constraint parameters are known)
 • Prediction function $f_\theta(x) = \theta^T x$ is linear

• [Wilder et al (2019a/b)] Heuristics to learn a surrogate loss

• We are interested in:
 • General decision loss (nonlinear, unknown constraint parameters)
 • Any prediction functions (e.g., f_θ is a random forest)
Approximating the Loss

• We can Taylor expand in \(\hat{y} \) around \(y^* \) (works well if \(\hat{y} \approx y^* \))

\[
\ell(z^*(\hat{y}); y^*) \approx \ell(z^*(y^*); y^*) + \nabla_z \ell(z^*(y^*); y^*)^T \nabla_y z^*(y^*)(\hat{y} - y^*)
\]

• First term (optimal performance) is constant and can be ignored

• Accounts for:
 • Effect of prediction on decision
 • Effect of decision on decision loss
Training Objective

• Prediction model objective is

$$\arg\min_{\theta} \sum_i \nabla_z \ell(z^*(y^*_i); y^*_i)^T \nabla_y z^*(y^*_i) (f_{\theta}(x_i) - y^*_i)$$

constant in θ

• Can be interpreted as re-weighting training examples (x_i, y^*_i)

• Compute gradient through **OPT objective** and **OPT decision**
 • Can be computed efficiently (Amos & Kolter, 2017)
Global Health Allocations

1260 health facilities in Sierra Leone

- Severe mismatch & inequality in health supply chains
- 42% of essential medicine needs currently not fulfilled

Goal: allocate limited inventory to facilities with highest forecasted need
Focal Essential Meds

• Child Health <5 years of age
 • Amoxicillin 250mg, Dispersible, Tab
 • Oral Rehydration Salts (ORS), Sachet (correlation to zinc)
 • Zinc Sulphate 20mg, Tab (correlation to ORS)

• Maternal Health
 • Oxytocin 10IU, Inj, Amp
 • Magnesium Sulphate 50%, Inj, 10ml, Amp

• Family Planning (adolescent health, women of child bearing age)
 • Depot Medroxyprogesterone Acetate (Depo-Provera) 150 mg/ml, Pdr for Inj
 • Ethinylestradiol & Levonorgestrel (Microgynon 30) 30mcg & 150mcg, Tab
 • Jadelle- Levonorgestrel two rod 150mg, implant
Data

• Dhis2, msupply forms
 • Widely used in Mozambique, Cote d’Ivoire, Rwanda, DRC, Chad, etc

• Significant % of missing values — imputation

• 1000s of separate time series — meta-learning
 • Leverage cross-product, cross-facility correlations

• Random forest “meta-model”
Out-of-Sample Results

Improve demand forecasts by 34-59% on held out test set month
Stochastic Optimization

- **Decision**: allocations a_n^* across N facilities

- **Objective**: minimize cost of unmet demand at each location
 $$\ell_n = \max\{\xi_n - s_n - a_n, 0\}$$
 - Current inventory s_n, demand ξ_n

- **Constraints**: fixed budget b, each district cannot hold more than its capacity c_n

- **Predictions**: draw random demands $\xi_i^{(k)}$ at each facility based on estimated distribution

$$a^* = \arg\min_{a \in \mathbb{R}^N_{\geq 0}} \sum_{k=1}^{K} \sum_{n=1}^{N} \ell_n^{(k)} \quad \text{subj. to} \quad \sum_{n=1}^{N} a_n \leq b$$

$$\ell^{(k)} \geq \xi^{(k)} - s - a$$

$$\ell^{(k)} \geq 0$$

$$s + a \leq c$$

* Efficient linear program with sample average approximation
For this LP...

- Prediction model objective is approximately

\[
\arg \min_{\theta} \sum_{k=1}^{K} \sum_{n=1}^{N} \mathbb{I} \left(\xi_n^{(k)} \geq s_n + a_n \right) \cdot \left| f_{\theta}(x_n) - \xi_n^{(k)} \right|
\]

- i.e., we up-weight training examples with unmet demand
Decision-Aware vs. Decision-Blind

* Compare unmet demand of decision-blind vs decision-aware random forest + LP for a fixed budget on a held-out test set month
Promising end-to-end improvements using AI/OR over current system in Sierra Leone

Reduce **20%-98%** unmet demand for focal essential medicines

Maximum allocation for each product is based on the # of total stock allocated from the Excel tool received for Quarter 1 2022

% of unmet demand = (unmet demand/actual demand) * 100
Thank you!

Questions? hamsab@wharton.upenn.edu