# Auditing and Designing for Equity in Government Service Allocation

Nikhil Garg, Cornell Tech (<a href="mailto:ngarg@cornell.edu">ngarg@cornell.edu</a>)

Special thanks to Urban Tech Hub at Cornell Tech & NYC Department of Parks and Recreation

## Government service allocation

Local government manages many services

~8k miles of streets in NYC

~700k trees lining streets in NYC

Housing, sanitation, transportation, etc.

### Operational tasks

[Learning] What problems are there?

[Allocation] Which ones to address?

[Auditing] Did we do a good job?

Desiderata: Efficiency & Equity



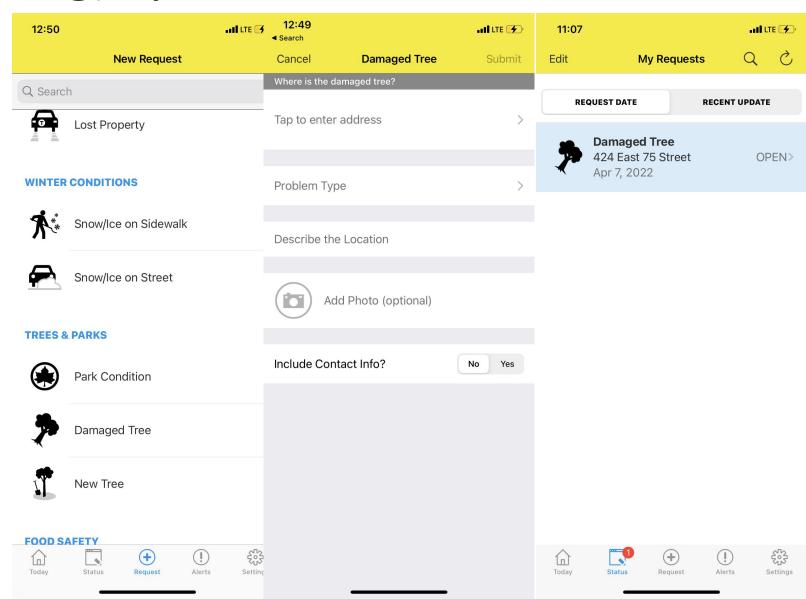
Street trees on Upper East Side in NYC

# 311 (crowdsourcing) systems

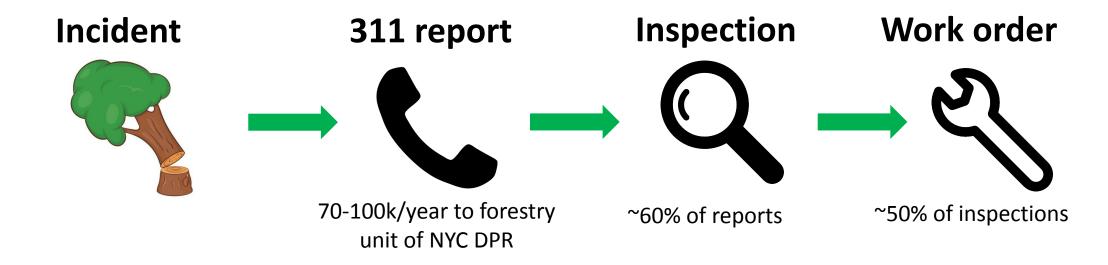
Cities have a phone number & app to complain to the local government

NYC's 311 system received about 2.7 million requests 2021

These are the primary way the government learns about problems



## Pipeline: from incident to work orders

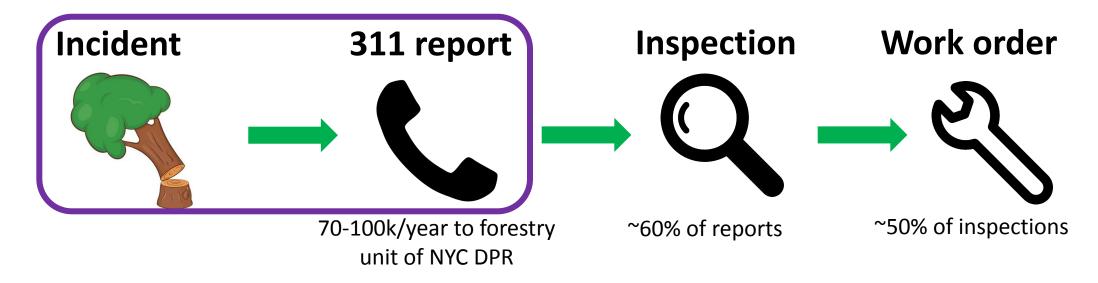


Why is this hard? Uncertainty, heterogeneous + strategic behavior, distribution shifts over time, capacity constraints, pipelined decisions

Research agenda: Audit and improve process's efficiency and equity

Existing collaboration: NYC Department of Parks and Recreation

## Understanding reporting behavior



Why? If there are disparities in who reports problems, there will be disparities in what work gets done

"Equity in Resident Crowdsourcing:

Measuring Under-reporting without Ground Truth Data"

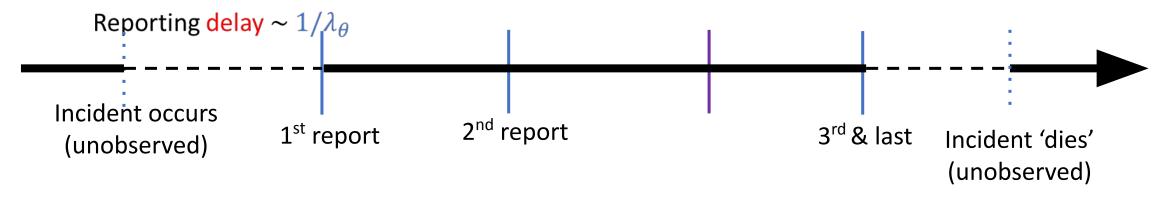
w/ Zhi Liu (ACM EC 2022)

# Model + Method summary

How long does it take for an incident of type  $\theta$  to be reported?

(Hard because we never observe anything before the first report)

**Step 1:** Write down a system model where the estimand corresponds to some identifiable quantity



## Model + Method summary

How long does it take for an incident of type  $\theta$  to be reported?

**Step 1:** Write down a system model where the estimand corresponds to some identifiable quantity

Step 2: Computationally + statistically tractable estimation

# reports(i) ~ Poisson(
$$\lambda_{\theta} \times (b_i - a_i)$$
)

**Spatial smoothing:** ICAR Model [Morris et al. 2019] Type  $\theta$  contains an indicator for census tract (2000+ in NYC)

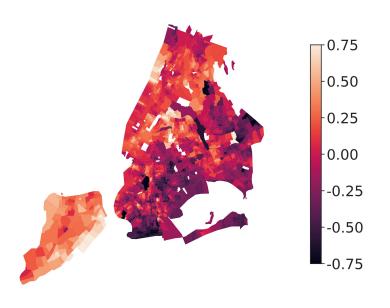
Then,  $\alpha_k$  for each tract is drawn with mean of  $\alpha_j$  of neighboring tracts

## Results

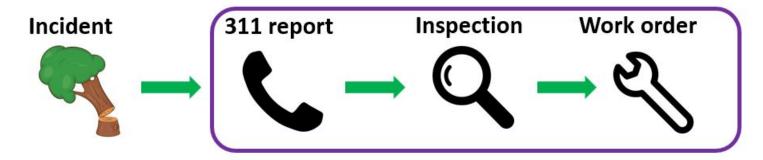
**Efficiency**: Reporting rates higher for more urgent incidents

Equity: Reporting rates vary substantially by neighborhood

|                         | Manhattan | Queens   |
|-------------------------|-----------|----------|
| High risk hazards       | 2.5 days  | 4.7 days |
| Medium risk tree damage | 15 days   | 28 days  |
| Low risk minor issue    | 112 days  | 209 days |



# Auditing agency decisions in entire pipeline



Questions: Is the agency inspecting the right reports? Are decisions efficient & equitable?

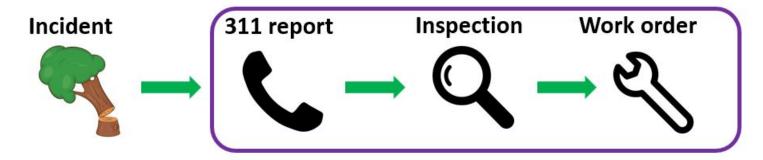
Challenge: Modeling capacity-constrained decisions under uncertainty

#### **Method**

- (1) Use ML techniques to estimate incident risk given report characteristics
- (2) Compare "optimal" set allocation decisions with empirical ones

"End-to-end Auditing of Decision Pipelines" w/ Benjamin Laufer and Emma Pierson

## Improving agency decisions



Question: Can we "optimally" re-prioritize inspections and work orders?

Challenge: Want "simple" policies that don't require maintaining an ML model

#### **Method**

- (1) Use ML techniques to [robustly] estimate incident risk given report characteristics
- (2) Come up with "service level agreements" for how quickly to address reports

"Making Inspection Decisions: Designing service level agreements" w/ Zhi Liu

## Discussion: ML + Operations

**Machine learning** 



**Operations** 



Fairness requires both:

We want to compare decisions for comparable incidents/people/groups



Analyze individual incidents

(characterizing uncertainty, representing data)



Make global decisions

(comparing incidents, allocation under capacity constraints, modeling incentives)

## Another example: Recommendation systems

Old school ML view: Predict match between single item and user pair

But there are many global properties of recommender systems

- How users/items affect each other [competition effects]
- How users affect what items are produced [supply-side equilibria]
- How can we recommend sets of items [diverse recommendations]

Joint work with: Christian Borgs, Wenshuo Guo, Meena Jagadeesan, Michael I. Jordan, Karl Krauth, Lydia Liu, Laura Mitchell, Jacob Steinhardt, Gourab K Patro, Lorenzo Porcaro, Qiuyue Zhang, Meike Zehlike

