Auditing and Designing for Equity in Government Service Allocation

Nikhil Garg, Cornell Tech (ngarg@cornell.edu)

Special thanks to Urban Tech Hub at Cornell Tech & NYC Department of Parks and Recreation
Government service allocation

Local government manages many services
 ~8k miles of streets in NYC
 ~700k trees lining streets in NYC
 Housing, sanitation, transportation, etc.

Operational tasks
 [Learning] What problems are there?
 [Allocation] Which ones to address?
 [Auditing] Did we do a good job?

Desiderata: Efficiency & Equity
311 (crowdsourcing) systems

Cities have a phone number & app to complain to the local government

NYC’s 311 system received about 2.7 million requests 2021

These are the primary way the government learns about problems
Pipeline: from incident to work orders

Why is this hard? Uncertainty, heterogeneous + strategic behavior, distribution shifts over time, capacity constraints, pipelined decisions

Research agenda: Audit and improve process’s efficiency and equity

Existing collaboration: NYC Department of Parks and Recreation
Understanding reporting behavior

Why? If there are disparities in who reports problems, there will be disparities in what work gets done

“Equity in Resident Crowdsourcing: Measuring Under-reporting without Ground Truth Data”

w/ Zhi Liu (ACM EC 2022)
Model + Method summary

How long does it take for an incident of type θ to be reported?

(Hard because we never observe anything before the first report)

Step 1: Write down a system model where the estimand corresponds to some identifiable quantity

- Incident occurs (unobserved)
- 1^{st} report
- 2^{nd} report
- 3^{rd} & last
- Incident ‘dies’ (unobserved)

Reporting delay $\sim \frac{1}{\lambda_{\theta}}$
Model + Method summary

How long does it take for an incident of type θ to be reported?

Step 1: Write down a system model where the estimand corresponds to some identifiable quantity

Step 2: Computationally + statistically tractable estimation

$$\# \text{ reports}(i) \sim \text{Poisson}(\lambda_\theta \times (b_i - a_i))$$

Spatial smoothing: ICAR Model [Morris et al. 2019]
Type θ contains an indicator for census tract (2000+ in NYC)
Then, α_k for each tract is drawn with mean of α_j of neighboring tracts
Results

Efficiency: Reporting rates higher for more urgent incidents

Equity: Reporting rates vary substantially by neighborhood

<table>
<thead>
<tr>
<th></th>
<th>Manhattan</th>
<th>Queens</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk hazards</td>
<td>2.5 days</td>
<td>4.7 days</td>
</tr>
<tr>
<td>Medium risk tree damage</td>
<td>15 days</td>
<td>28 days</td>
</tr>
<tr>
<td>Low risk minor issue</td>
<td>112 days</td>
<td>209 days</td>
</tr>
</tbody>
</table>

![Map of Manhattan and Queens showing reporting rates variation by neighborhood.](image)
Auditing agency decisions in entire pipeline

Questions: Is the agency inspecting the right reports? Are decisions efficient & equitable?

Challenge: Modeling capacity-constrained decisions under uncertainty

Method
(1) Use ML techniques to estimate incident risk given report characteristics
(2) Compare “optimal” set allocation decisions with empirical ones

“End-to-end Auditing of Decision Pipelines”
w/ Benjamin Laufer and Emma Pierson
Improving agency decisions

Question: Can we “optimally” re-prioritize inspections and work orders?

Challenge: Want “simple” policies that don’t require maintaining an ML model

Method
(1) Use ML techniques to [robustly] estimate incident risk given report characteristics
(2) Come up with “service level agreements” for how quickly to address reports

“Making Inspection Decisions: Designing service level agreements”
w/ Zhi Liu
Discussion: ML + Operations

Fairness requires both:
We want to compare decisions for comparable incidents/people/groups

Analyze *individual* incidents
(characterizing uncertainty, representing data)

Make *global* decisions
(comparing incidents, allocation under capacity constraints, modeling incentives)
Another example: Recommendation systems

Old school ML view: Predict match between single item and user pair

But there are many global properties of recommender systems

- How users/items affect each other [competition effects]
- How users affect what items are produced [supply-side equilibria]
- How can we recommend sets of items [diverse recommendations]

Joint work with: Christian Borgs, Wenshuo Guo, Meena Jagadeesan, Michael I. Jordan, Karl Krauth, Lydia Liu, Laura Mitchell, Jacob Steinhardt, Gourab K Patro, Lorenzo Porcaro, Qiuyue Zhang, Meike Zehlike
Questions?
ngarg@cornell.edu