
Algorithmic Robustness

Authors: David Jensen (University of Massachusetts Amherst), Brian LaMacchia (Farcaster
Consulting Group, LLC), Ufuk Topcu (University of Texas Austin), Pamela Wisniewski (Vanderbilt
University)

With Support from: Haley Griffin (Computing Community Consortium)

Published: October 17, 2023

Introduction

Algorithmic robustness refers to the sustained performance of a computational system in the
face of change in the nature of the environment in which that system operates or in the task that
the system is meant to perform. For example, we might say that an autonomous vehicle's
control system is robust if it continues to operate effectively even when it encounters driving
conditions that were unforeseen during its initial design and training (e.g., a sudden change in
the road, traffic, or weather conditions). Below, we motivate the importance of algorithmic
robustness, present a conceptual framework, and highlight the relevant areas of research for
which algorithmic robustness is relevant.

Recent concerns about robustness have been particularly acute for systems developed with
artificial intelligence (AI) and machine learning (ML) technologies, but such concerns apply more
broadly to nearly all computational systems. Complexity, opacity, and brittleness can afflict
systems designed and built using traditional methods of software development.

Why robustness? Robustness is an important enabler of other goals that are frequently cited in
the context of public policy decisions about computational systems, including trustworthiness,
accountability, fairness, and safety. Despite this dependence, it tends to be under-recognized
compared to these other concepts. This is unfortunate, because robustness is often more
immediately achievable than these other ultimate goals, which can be more subjective and
exacting. Thus, we highlight robustness as an important goal for researchers, engineers,
regulators, and policymakers when considering the design, implementation, and deployment of
computational systems.

We urge researchers and practitioners to elevate the attention paid to robustness when
designing and evaluating computational systems. For many key systems, the immediate
question after any demonstration of high performance should be: “How robust is that
performance to realistic changes in the task or environment?” Greater robustness will set the
stage for systems that are more trustworthy, accountable, fair, and safe.

Toward that end, this document provides a brief roadmap to some of the concepts and existing
research around the idea of algorithmic robustness.

Motivation

Concerns about algorithmic robustness have grown as computational systems have become
more central in societal decision making. Algorithmic approaches have been applied to a wide
variety of tasks previously performed entirely by humans, including medical diagnosis, loan
approval, parole decisions, employment screening, piloting aircraft, and driving automobiles. A
variety of social science findings indicate that human operators often place inappropriate trust in
automated systems, even when those systems are explicitly designed to augment, rather than
replace, human decision making.

Concerns about algorithmic robustness have also grown as computational systems have
simultaneously become more complex, capable, and opaque. Some of the most salient
examples include self-driving automobiles, large language models such as ChatGPT, and facial
recognition systems. In particular, experience with these systems indicates that human
operators can find it extremely difficult to forecast what changes in task and environment might
negatively affect the performance of these computational systems.

Finally, concerns have grown as systems have come to rely on machine learning models.
Statistics and machine learning technologies have long been used to produce systems whose
performance can exceed that of humans on certain limited tasks. While such increased
performance is often accompanied by unexpected brittleness, human supervision has served as
an effective fail-safe. On the other hand, recent advances in machine learning have often
decreased, rather than increased, the degree to which human observers can understand the
basis of the systems’ output and forecast whether such output will be affected by changing
conditions.

In particular, the increasing use of deep learning technologies has produced end-to-end
systems with remarkable competence in typical situations. However, the performance of these
systems can drop precipitously when seemingly incidental changes to the environment or task
are introduced.1 These systems can be characterized as “not knowing what they know” — they
can be “confidently wrong” and thus mislead human operators. The result is that systems based
on modern machine learning can have sharp performance "cliffs" in which performance
degrades catastrophically with little warning or predictability.

1 In machine learning, these changes are sometimes referred to as distribution shift, concept shift, or
dataset shift. Recent work has also described the resulting problem as out-of-distribution (OOD)
inference.

Conceptual framework

To better understand what is meant by "algorithmic robustness," it is useful to decompose any
given application into its system, task, and environment. In a typical application, a system
(a.k.a., algorithm, agent, piece of software), performs a task in an environment. For example, an
autonomous vehicle (the system) is given a specific destination (the task) by a user, and then
the system attempts to navigate to that destination given the available roads, traffic conditions,
and weather (the environment).

The performance of a given system is typically measured in terms of one or more desirable
behaviors of the system (e.g., time, distance, fuel usage, safety, etc.) with respect to the task in
a given environment. Robustness is a property of systems that minimize performance changes
when aspects of the task or environment change.2,3 For example, we might say that a particular
autonomous vehicle is robust if its safety and navigation efficacy are relatively unchanged even
though a user alters their desired destination (a change in the task) or major new construction
projects are started in the region surrounding those destinations (a change in the environment).4

On its face, the algorithmic robustness of a given system might appear relatively easy to
evaluate empirically. Researchers could run experiments that change various aspects of the
task or environment, and then determine whether key performance measures of the system
change. However, robustness is typically a relative rather than an absolute concept. Changing
aspects of the task or environment can make the task inherently more or less difficult, such that
even a theoretically optimal system will perform better or worse given the change. For example,
in the autonomous vehicle example above, the inherent task difficulty might be affected by
weather, traffic, amount of road construction, destination, time of day, and many other factors.
This also implies that robustness is a continuous rather than a binary characteristic: Systems
are not robust or non-robust. Instead, they are more or less robust than alternative systems.5

Another important consideration is the approach used to produce robustness. Systems can be
robust because they are:

● Invariant — The system is unresponsive to changes to the task or environment. For
example, an autonomous vehicle might drive in the same manner regardless of lighting,
temperature, or road conditions. Such behavior might produce robustness with respect
to performance indicators that measure delivery time.

5 Despite this, this document will sometimes refer to systems being "robust." This should be read as
implying that they are "more, rather than less, robust."

4 In this document, we explicitly focus on changes to the task and environment that are non-adversarial.
That is, the changes are not explicitly designed by an adversary to change system performance, but
occur more naturally or incidentally. System response to adversarial change is a very important topic, and
is more commonly encompassed under the rubrics of “security” or “resilience”.

3 Clearly, some performance changes are unavoidable (e.g., the minimum time required to reach a goal
will change with the distance of that goal from a start state). However, robust systems generally limit the
performance changes in response to environment or task changes. See the next paragraph for additional
discussion.

2 This parallels other definitions such as the one provided by ISO (“ability of a system to maintain its level
of performance under a variety of circumstances”(ISO/IEC TS 5723:2022) and the related discussion in
NIST’s AI Risk Management Framework 1.0.

● Responsive — The system responds appropriately to the environment, and thus is
robust. No information is carried over between different task instances (i.e., no learning),
so the same behavior will happen if the same environment is encountered again. For
example, an autonomous vehicle might drive more slowly when the road is obscured by
snow, leaves, or other substances (e.g., wind-driven dust). Such behavior might produce
robustness with respect to performance indicators that measure safety.

● Adaptive — The system itself changes in response to the environment, resulting in
greater robustness. Information is carried over between task instances, so a more
responsive behavior will occur if the same environment is encountered again. For
example, an autonomous vehicle might learn from experience how wind-driven dust
affects braking time and adapt accordingly. Such behavior might produce robustness
with respect to performance indicators such as long-term trade-offs between safety and
performance.

Note that these approaches are not mutually exclusive, but instead can be used in combination.
A single system might employ all three approaches, depending on the task and environmental
changes that it encounters. For example, a system might be designed and constructed so that it
is invariant under one set of potential changes, but then become responsive (by trying each of a
set of fixed alternative strategies) or adaptive (by learning new strategies) if it detects other sorts
of changes to its task or environment.

All other things being equal, invariant systems are typically preferred over responsive or
adaptive systems, because invariant systems require no additional time to adapt. However,
systems that are successfully responsive and adaptive can be expected to sustain performance
over a wider range of potential changes to the task or environment.

Relevant research areas

Unsurprisingly, a variety of research efforts within the computer science community have aimed
to advance the state-of-the-art in algorithmic robustness, often supported by future-looking
federal research programs. For example, the National Science Foundation (NSF) and the
Defense Advanced Research Projects Agency (DARPA), two of the largest supporters of federal
research programs in computing, each support multiple efforts related to algorithmic robustness.
These include:

From NSF:

● Secure and Trustworthy Cyberspace — The Secure and Trustworthy Cyberspace
(SaTC) program6 is an interdisciplinary and cross-cutting initiative charged with the goal
of protecting and preserving the growing social and economic benefits of cyber systems
while ensuring security and privacy by finding fundamentally new ways to design, build,
and operate cyber systems; protect existing infrastructure; and motivate and educate
individuals about cybersecurity.

6 https://new.nsf.gov/funding/opportunities/secure-trustworthy-cyberspace-satc

https://new.nsf.gov/funding/opportunities/secure-trustworthy-cyberspace-satc

● Cyber-Physical Systems — The Cyber-Physical Systems (CPS) program7 supports core
research needed to engineer complex cyber-physical systems, some of which may also
require dependable, high-confidence, or provable behaviors. Functionality enabled by
learning and artificial intelligence is gaining importance in cyber-physical systems rapidly.
As cyber-physical systems become more data-rich, the potential to move toward
autonomous designs is growing and robustness and safety are increasingly central.

● Safe Learning-Enabled Systems — The Directorate for Computer and Information
Science and Engineering (CISE) released a new solicitation8 in 2023 focused on Safe
Learning-Enabled Systems which focuses on foundational research that leads to the
design and implementation of learning-enabled systems in which safety and robustness
is ensured with high levels of confidence.

From DARPA:

● Competence-Aware Machine Learning — A first step toward robustness is knowledge of
the conditions under which a given system’s performance will change. Recent research
has sought to characterize system competence, particularly when those systems are
based on machine learning. DARPA’s Competency-Aware Machine Learning (CAML)
program aims to enable learning systems to be aware of their own competence and thus
“know what they know”.

● Explainable Artificial Intelligence — A key feature of trustworthy AI systems is the ability
to explain the reasoning of such systems. Without such explanations, human operators
won’t know when and to what degree the inferences of such systems can be trusted.
Recent research has sought to develop methods to explain otherwise opaque AI
systems and to enable development of systems whose inferences are inherently more
explainable than those of modern machine learning models. DARPA’s recent Explainable
AI (XAI) program aimed to create machine learning techniques that could produce more
explainable models, while maintaining high performance, and enable human users to
understand, appropriately trust, and effectively manage modern AI systems.

● Domain adaptation and transfer learning — If models are not directly transportable, they
can often be repaired or adapted to new environments and tasks by minimal retraining.
This approach is often referred to as domain adaptation or transfer learning. This area
was the focus of a DARPA program more than a decade ago.9

● Adaptation to open-world novelty — Research in computational systems often assumes
a “closed” world in which the potential environmental conditions are entirely known.
Recent work has sought to develop systems that act appropriately and effectively in
novel situations that occur in open worlds. DARPA’s Science of Artificial Intelligence and
Learning for Open-world Novelty (SAIL-ON) program aims to develop the scientific

9 Senator, T. E. (2011). Transfer learning progress and potential. AI Magazine, 32(1), 84-84.
8 https://www.nsf.gov/pubs/2023/nsf23562/nsf23562.htm
7 https://new.nsf.gov/funding/opportunities/cyber-physical-systems-cps

https://www.nsf.gov/pubs/2023/nsf23562/nsf23562.htm
https://new.nsf.gov/funding/opportunities/cyber-physical-systems-cps

principles necessary to detect, characterize, and adapt to novelty in open-world
domains.

● Adversarial learning — Changes in tasks and environments can sometimes be made
intentionally to disrupt the performance of a computational system. These changes can
even be made in ways that exploit the fact that a given system is based on machine
learning (e.g., by influencing training data or the learning algorithm itself). For example,
DARPA’s program in Guaranteeing AI Robustness Against Deception (GARD) aims to
establish theoretical foundations for identifying system vulnerabilities, characterizing
properties that will enhance system robustness, and encouraging the creation of
effective defenses.

● Life-long learning — Many systems based on machine learning cease learning after an
initial training phase, but other systems have been designed to continue learning after
deployment. Some of these latter systems exhibit troubling behavior when tasks or
environments shift, “forgetting” previously learned knowledge and skills as they learn
new ones. This reduces robustness when tasks or environments revert to earlier
patterns. Researchers have sought to reduce or eliminate such “forgetting”. For
example, DARPA’s recent Lifelong Learning Machines (LLM) program aimed to develop
systems that can learn continuously during execution and become increasingly expert
while performing tasks, are subject to safety limits, and apply previous skills and
knowledge to new situations, all without forgetting what has been previously learned.

In conclusion, algorithmic robustness is an indispensable feature for computational systems,
which increasingly affect virtually every aspect of our lives. It is important that we strive to
develop new computational systems that not only are trustworthy, accountable, fair, and safe but
also sustain these desirable features under reasonable changes in their tasks and the
environment in which they operate. It is also necessary to establish new research programs that
aim to evaluate the algorithmic robustness of computational systems and equip future
computational systems with algorithmic robustness.

