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Introduction

The current wave of artificial intelligence (Al) innovation is being driven by a fifteen-year-old
paradigm shift in Al research. That shift was just the most recent in a series of such shifts since
Al got its modern start in 1956. What could be the next such shift in Al research? Below, we
describe why this question is important to researchers, practitioners, and policymakers, and we
provide six examples of paradigms that may help define the next generation of Al research.

Why Envision Al Research Futures?

Envisioning the future is challenging. It is difficult for researchers to see beyond the current
scientific paradigm, for technologists to see beyond the latest technological developments, and
for policymakers to see beyond the issues those new technologies raise. This is particularly
true when powerful new technologies sweep rapidly into public awareness, as Al technologies
have recently done.

However, it is useful to recall that the current scientific and technical moment for Al — powered
by deep neural networks, large language models, and other foundation models — is just the
latest in a series of such moments that the field has experienced in its comparatively brief
history. Prior research paradigms for Al include symbolic processing, knowledge-based
systems, and statistical machine learning. Each paradigm was hailed as ushering in a new age
of Al, each produced a series of transformative applications, and each was eventually
superseded by one or more new paradigms that built on those previous insights.
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This suggests an obvious question: What'’s next for Al research? That is, what comes after the
current age of deep neural networks and foundation models?

Answers to this question are unlikely to emerge easily because the transience of the current
paradigm can be difficult to imagine. When dominant, a paradigm appears to be the end point,
the apotheosis of a long line of precursors that merely paved the way for the current (and final)
paradigm. One reason for this is that early partisans who successfully bring a paradigm into
dominance within a field naturally focus attention on the capabilities of the new paradigm,
rather than on its limitations. Typically, those limitations only become visible later. A second
reason is that the current paradigm succeeds because it provides new capabilities for research
and development, and researchers are often busy exploiting those capabilities rather than
asking what comes next. A third reason is that successors to a dominant paradigm can be
extremely challenging to identify. Such successors are often only obvious in retrospect, after
the limitations of the prior paradigm (and the benefits of a successor paradigm) become
evident.

That said, now may be a particularly good time to consider possible futures for Al research.
The current paradigm of foundation models based on deep neural networks has been dominant
for less than 15 years, but some of its limitations have already started to become apparent.’
Some researchers, both inside and outside of the current paradigm, have begun to suggest
that this paradigm alone won’t be sufficient to reach many of the desired goals of Al.

Identifying and describing concrete visions of possible futures for Al research has substantial
benefits. First, such visioning can demonstrate the value of broad-based research programs
that include efforts to both exploit the current paradigm and to explore the value of alternative
paradigms. Such a balanced approach has been responsible for all prior paradigm shifts in Al
research. In particular, federal research funds have supported exploration of alternative
paradigms long before it was obvious that one of them would become dominant and lead to
major new technological capabilities. Second, concrete visions of alternatives to the current
paradigm can help researchers themselves focus on more revolutionary advances, rather than
only incremental advances that exploit the current paradigm. Finally, concrete descriptions of
possible futures for Al research can help correct a potential misconception among the public
and some policy makers that “Al is done, except for the scaling.”

The CCC Task Force on Al Research Futures

The authors of this report are members of the Computing Community Consortium (CCC) Task
Force on Al Research Futures. This Task Force was formed to identify, describe, and
disseminate possibilities for “what comes next” — a set of potential future paradigms for Al

'For example, researchers have identified significant limitations of LLMs in classic Al reasoning tasks involving
planning (e.g., Valmeekam et al. 2025) and causal reasoning (e.g., Jin et al. 2023).

2Many of the technical performance metrics of foundation models have exhibited power-law like behavior. This has
led to more general statements about the expected overall intelligence of such models in the future. For example,
Sam Altman of OpenAl has said that “[t]he intelligence of an Al model roughly equals the log of the resources used
to train and run it.... It appears that you can spend arbitrary amounts of money and get continuous and predictable
gains; the scaling laws that predict this are accurate over many orders of magnitude” (Altman 2025).
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research. To gather input, the Task Force convened sets of Al experts to propose, describe,
refine, and discuss potential future directions for Al research in roundtable discussions. Initially,
the roundtable discussions were held with Fellows of the Association for the Advancement of
Artificial Intelligence (AAAI) during and shortly after the AAAI Conference on Artificial
Intelligence in February and March 2025. The Task Force subsequently held additional
roundtables with Al researchers throughout March 2025. The ideas expressed in this report,
while influenced by the roundtable discussions, are those of the authors, and not the
individuals with whom we spoke.

This CCC effort complements another effort — the AAAI 2025 Presidential Panel on the Future
of Al Research — which released a report on their efforts in March 2025.%* That report aimed to
“define the current trends and the research challenges still ahead of [the Al research
community] to make Al more capable and reliable...”. The methodology for gathering input for
the AAAI 2025 Presidential Report included the development of a survey on potential futures
and gathering data from members of AAAL.

What are “Al Research Futures”?

Both at the outset of the Task Force’s work and through the roundtable discussions, we
continually refined what we meant by a “future” for Al research. We ultimately identified four
criteria that we used to elicit and refine the specific futures presented in this document.

First, research futures should be relatively unified and bounded paradigms of research. That is,
some research projects should be consistent with a given future, while others should not.
Second, research futures should be possible, but not necessatrily likely. We are not trying to
predict the future, but instead identify ways that Al research might progress, depending on
various factors. Third, research futures should describe both ends and means. Many
discussions about the future of Al research identify desirable “ends” for Al research (i.e., new
capabilities that would be useful in future Al technologies). However, it is far less frequent (and
more challenging) to identify the “means” for producing those ends (i.e., research approaches
that might credibly produce those new capabilities). Finally, research futures should be
motivated by specific technical issues. Examples include focusing on addressing one or more
shortcomings of current Al systems (e.g., embodied Al) or building on a recently emerging
technical possibility (e.g., quantum Al).

Prospective Al Research Futures

Below are six Al research futures that meet the criteria outlined above: neuro-symbolic Al,
neuromorphic Al, embodied Al, multi-agent Al, human-centered Al, and quantum Al. The
research futures described below are neither mutually exclusive nor comprehensive. However,
they provide concrete examples of approaches that might take Al research in important new
directions.

®Rossi et al. (2025).

“During one of the Task Force’s roundtables, the AAAI President, Francesca Rossi, noted that the work described in
AAAI’s report is complementary to the work of the CCC Task Force.
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Neuro-Symbolic Al

Neuro-symbolic Al merges deep neural networks, which excel at learning patterns from data,
with symbolic Al, which enables reasoning based on logic and prior knowledge.® This
integration aims to overcome several limitations of deep neural networks alone. It could
significantly enhance reliability by incorporating domain knowledge and leveraging available
input structures. It could improve accountability, particularly where the opacity of neural
networks limits their utility. Finally, neuro-symbolic Al could achieve greater generalization by
combining logic and concepts in diverse ways, enabling systems to move beyond data
distributions explicitly represented in training data.

However, the neural and symbolic paradigms are very different. While each paradigm has
distinct advantages, their differences hinder seamless integration. Neural networks operate on
sub-symbolic, distributed representations, where knowledge is encoded across a vast number
of interconnected neurons through learned weights and biases. Their distributed nature makes
it difficult to extract and manipulate explicit, human-readable symbols. Bridging this gap
requires complex mapping mechanisms that attempt to translate between continuous,
high-dimensional neural activations and discrete, interpretable symbols, and vice versa.
Furthermore, the divergent execution modes of neural and symbolic methods pose significant
challenges for creating a unified system. Neural networks excel at pattern recognition,
generalization from data, and handling noisy or incomplete information. Their performance
depends heavily on the quantity and quality of training data. In contrast, symbolic Al excels at
tasks requiring explainability, formal verification, and adherence to predefined reasoning
methods. It can provide clear, step-by-step derivations for its conclusions. A key area of
research is developing hybrid architectures that facilitate dynamic switching or synergistic
cooperation between these inductive and deductive approaches, demanding innovative
solutions for control flow, information exchange, and conflict resolution between their
respective outputs.

Research in neuro-symbolic Al focuses on identifying integration strategies for neural and
symbolic modes. There are examples of neuro-symbolic approaches that provide foundations
for this research, but researchers have not identified a universal approach or an understanding
of which approaches are likely to lead to a generalized neuro-symbolic model. Current efforts,
for example, aim to improve the accuracy of LLMs by using domain knowledge and logic to
prune hallucinations or to be more capable by invoking symbolic tools. The longer-term goal is
to build richer synergies that facilitate the novel application of known concepts and
abstractions to understand and solve new problems. To uncover these synergies, researchers
are constructing richer datasets that combine neural inputs with symbolic targets, new
architectures that are both differentiable and symbolic to make the entire hybrid system
trainable with gradient-based optimization, and new frameworks and tools to lower the
adoption barrier for integrating neural and symbolic elements.

®For more information, see recent surveys on the history and scope of neuro-symbolic approaches, for example
Buyan, et al. (2024). There are arguments for the potential of recent advances in LLMs to spark new interest in
neuro-symbolic Al to address the Grounding Problem, see Maher, et al. (2024).
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Neuromorphic Al

Neuromorphic computing uses computational hardware whose physical structure mimics some
key aspects of the neural tissue of humans and other animals. Specifically, neuromorphic
computing devices use hardware elements — such as transistors, memristors, spintronic
memories, and threshold switches — to emulate the operation of neurons. Over the past
several decades, a variety of such neural hardware has been designed, constructed, and
evaluated, producing a diverse array of systems all grouped under the general category of
neuromorphic computing.®

The current dominant paradigm of Al research focuses on deep neural networks, and thus can
be said to be “brain-inspired”. However, deep neural networks can be extremely
power-intensive, particularly when used to implement systems such as large language models.
In contrast, neuromorphic approaches attempt to directly mimic the structure and behavior of
neurons in hardware. These approaches typically excel in applications that aim to minimize
size, weight, and power consumption. In addition, neuromorphic hardware tightly couples
memory and computation, thus minimizing latency.

Neuromorphic approaches to Al have benefited from at least two recent trends in computer
hardware and applications. First, developments in neuromorphic hardware have accelerated in
recent years, with an increasing number of chips and larger systems becoming commercially
available. Second, practitioners have shown increasing interest in intelligent mobile and
embedded devices, where size, weight, and power considerations are particularly important.
Such applications are a relatively poor match for deep neural networks and a far better match
for neuromorphic systems.

Despite these advantages, research in neuromorphic computing continues to face significant
challenges. First, computational results from neuromorphic hardware can vary from run-to-run
and machine-to-machine, and this can decrease the accuracy and reliability of any given
computation. Second, despite a long history, research in neuromorphic computing is still fairly
sparse, thus limiting the availability of standard methods, systems, and benchmarks. Finally,
research in neuromorphic computing draws on concepts and principles from multiple fields —
including neuroscience, computer science, electrical engineering, mathematics, and physics.
This multidisciplinary character can make the field less attractive to early career researchers
and pose a steep learning curve for those who do choose to pursue research in this area.

Embodied Al

Embodied Al represents a paradigm that moves beyond purely computational intelligence to
systems that possess a physical presence in the world. Unlike current dominant paradigms that
focus on disembodied Al, embodied Al agents perceive, act, and learn within physical
environments or (for computational scaling with a loss of some realism) high-fidelity
simulations.” Direct interaction with the physical world provides embodied Al with unique
access to rich, multimodal sensorimotor data — including proprioception, touch, vision, and

®For a more detailed introduction to neuromorphic Al, see: Kudithipudi et al. (2025); and Muir & Sheik (2025).
"For more discussion of embodied Al, see: Brooks (1991); Pfeifer & Fumiya (2004); and Deitke et al. (2022).
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sound — that is intrinsically grounded in reality. This access to "physical data" is fundamentally
different from the symbolic and statistical patterns that large language models infer from vast
training sets of human-generated information, allowing embodied Al the potential to develop a
deeper understanding of causality, spatial relationships, and object properties through direct
experience, mirroring the way biological intelligence develops.

The ability of embodied Al to gather and interpret data directly from the physical world, in a
way that current deep learning approaches cannot, could lead to fundamental breakthroughs.
For instance, the implicit understanding of physics, object permanence, and human-robot
interaction that arises from direct physical engagement could enable a more grounded and
robust form of intelligence that contrasts sharply with the often brittle and error-prone
"understanding" of the physical world exhibited by LLMs. Building on experience rather than
inference allows the accumulation of rich, real-world data and gives embodied Al the potential
to achieve levels of robust common sense and dexterous manipulation that are critical for
deployment in unstructured human environments.

One primary hurdle is the sheer complexity of real-world environments, which are dynamic,
unpredictable, and necessitate robust perception and action capabilities under varying
conditions. While LLMs enable some types of common-sense reasoning based on abstract
linguistic patterns, embodied Al must contend with the physical world's tangible uncertainties
and continuous data streams. The creation of hardware that is both sophisticated enough for
complex tasks and resilient enough for continuous physical interaction remains a substantial
engineering challenge, encompassing issues of power, durability, and miniaturization.
Furthermore, developing effective learning algorithms for embodied agents requires addressing
problems of sample inefficiency, safe exploration in physical spaces, and the transfer of
learned skills from simulation to reality (the "sim-to-real" gap), all of which are uniquely
exacerbated by the need to interact with physical dynamics.

Multi-Agent Al

Multi-agent Al moves beyond today’s single, monolithic Al systems to a collaborative
ecosystem of specialized Al agents. In this paradigm, multiple independent Al agents, each
possessing distinct capabilities, knowledge, and objectives, interact and coordinate to achieve
complex overarching goals. These agents can communicate, negotiate, and even learn from
each other within a shared environment. This distributed intelligence allows for emergent
behaviors and more robust, adaptive solutions to problems that would be intractable for a
monolithic system. Examples range from autonomous driving systems where agents handle
perception, planning, and control, to complex supply chain management where agents
optimize logistics, inventory, and demand forecasting.®

Multi-agent Al offers a clear contrast to LLM-based approaches, which, while powerful in
natural language processing and generation, typically operate as single, centralized entities.
Traditional LLMs excel at tasks that require extensive knowledge recall or creative text

8For a more detailed introduction and discussion of multi-agent Al, see: Shoham & Leyton-Brown (2008), Zhang et
al. (2021), Hadfield et al. (2025).
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generation based on a single prompt. However, they are less effective in tasks requiring
multi-step reasoning, dynamic problem-solving, diverse forms of expertise, or real-time
interaction with complex environments. Multi-agent Al, conversely, leverages specialization and
parallel processing. Instead of one large model attempting to do everything, a multi-agent
system can deploy a "team" of agents, each fine-tuned for a specific role (e.g., a "planner”
agent, a "coder" agent, a "critic" agent). This division of labor leads to improved accuracy,
reduced hallucination, enhanced scalability, and the ability to handle more dynamic and
complex scenarios by allowing agents to validate each other's work and adapt to changing
conditions.

Realizing the potential of multi-agent Al requires the development of robust communication
protocols and coordination mechanisms that enable effective interaction and information
exchange between diverse agents. This includes establishing standard ontologies for shared
understanding, designing effective message passing systems, and implementing frameworks
to manage task allocation, conflict resolution, and collaborative decision-making among
agents. Further, the ability for agents to learn and adapt over time, both individually and
collectively, is crucial. This necessitates advancements in reinforcement learning,
multi-objective optimization, and mechanisms for knowledge sharing across the agent network.

Human-Centered Al

Human-centered Al starts with the principle that the complementary nature of human and
machine cognition implies that we can have significantly more powerful systems through
integration of both. That is, this paradigm emphasizes collaboration and coordination between
humans and Al systems to augment human capabilities, rather than attempting to have
autonomous Al systems that function without human interaction to replace human intelligence.®
While human-Al teaming is already a major area of research focus, much of that work has
emphasized user experience, interaction design, and human factors. However, effective
human-centered Al may require Al systems that have “social intelligence,” in the sense of being
able to detect and respond to complex social cues, infer complex cognitive and affective states
of human teammates, interact in temporally extended and non-manipulative ways, and reason
about complicated and context-sensitive human social networks.

The goal of this approach to Al research, design, and development would be systems that
contribute to the social interactions and group performance that underlie so many human
successes. Such technology would stand in stark contrast with the current efforts to develop Al
systems that can function autonomously, often with the goal of replacing human cognition.

Social cognition and interactions have been widely studied in the cognitive and neural
sciences, but these insights have only rarely made their way into Al research. For example,
multiple studies have implemented simple versions of so-called “theory of mind” inference in Al
systems, but these inferential systems have not regularly been incorporated into Al systems
that interact with humans in the real world. The area of social robotics has arguably done the
most Al research in this space, but those insights have not been incorporated into the field of
Al more generally.

°For more discussion of human-centered Al, see: Ozmen Garibay (2023); Riedl (2019); and Shneiderman (2022).
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A central challenge is to redesign Al research so that social interactions and understanding are
part of the foundation of the Al system, rather than being added later through (perhaps
sophisticated) interfaces. Research comparing social and asocial animal species has
consistently found very large differences in cognitive capabilities, which suggests that Al
systems designed “from the ground up” to be social would potentially be quite different from
our current systems. However, such a redesign would require not only research support, but
also a significantly more multidisciplinary approach that incorporates insights from a range of
social science and animal cognition disciplines.

Quantum Al

Quantum Al is a still somewhat speculative paradigm of Al research based on exploiting
emerging principles and methods of quantum computing. Quantum computing has come to
include a wide variety of theoretical ideas and, more recently, practical technologies for
harnessing physics in unique ways to execute computational processes. Quantum computing
exploits the properties of physics found in the various states of matter to “compute” in radically
different ways. A central quantum computing concept is that of a quantum bit or “qubit”. In
contrast to a traditional zero-or-one “bit”, a qubit uses the superposition property of matter to
take on states in which the qubit is simultaneously both zero and one. Quantum algorithmic
approaches to classical computing tasks have been of deep theoretical interest since the early
1990s and, in recent years, quantum machines have made implementation of these algorithms
physically possible.’® Quantum computing is one of several areas in which advances in the
broader field of computer science can help drive progress in Al.

For example, quantum computing can be applied to optimization and search problems in Al. In
this context, quantum phenomena are employed as an analog to stochastic search or statistical
optimization. A quantum approach can enable rapid convergence on the minima or maxima of
the energy landscape without having to perform a discrete search over the variable
assignments. Another emerging opportunity for quantum devices is their use for physical
simulation. Quantum devices promise to be able to perform simulations using direct atomic
physics —rather than as discrete approximations. As such, quantum devices could prove useful
for understanding states in the physical world, creating more accurate models, and improving
the fidelity of what computers are capable of. While these capabilities are not specific to Al,
they could prove particularly useful for Al techniques that make explicit inferences using a
world model.

The use of quantum computing for Al faces an array of challenges. Three particularly stand out.
First, for a given Al problem to be aided by quantum computing, an appropriate problem
encoding must be developed that reduces the traditionally intractable aspects of an Al problem
to tasks that can be executed on a quantum device. Second, using quantum devices as a
component in an Al system requires digital-to-analog conversion of key data required by the
quantum component, as well as analog-to-digital conversion of the quantum component’s
output. These conversions are time consuming and prone to errors and noise, and the

®There are many references around topics of quantum computing and Al. Specific to the use of quantum machines
for search, optimization, and machine learning problems there are many dozens of papers. Three of a survey nature
are: Biamonte et al. (2017); Schuld et al. (2014); and Rajak et al. (2022).
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computational cost of these conversions can sometimes outweigh any benefits gained from
the quantum acceleration. Third, the scale of quantum computing devices, usually represented
as the number of qubits, is very limited in comparison to traditional CMOS devices."" Hence,
state spaces requiring thousands of variables are out of direct reach for the current generation
of quantum hardware.

Near-Term Advances in Deep Neural Networks

An eventual paradigm shift in Al research is virtually inevitable, but the timing and nature of that
paradigm shift are far from certain. When it does occur, the shift may be toward one or more of
the directions described above, or it may be toward a currently unforeseen paradigm. That
said, before (or even after) such a shift occurs, continued improvements based on the current
paradigm of deep networks will presumably continue, and many of those improvements will
originate from the rich interactions between academic and industrial research.

Since the early 2010s, large deep neural networks (DNNSs) have been the dominant paradigm in
Al due to empirical evidence demonstrating performance improvements over earlier types of
machine learning models across a wide range of tasks. These improvements were driven
primarily by a combination of algorithmic advances, increases in the scale of computation, and
the availability of large-scale data. Huge investments have been made in large foundation
models using transformer architectures, pre-trained on massive amounts of data, leading to
impressive capabilities in natural language understanding and generation, vision, audio, and
multi-modal tasks. This has enabled wide-ranging applications from conversational Al to
creative content generation and complex decision-making.

There is a growing recognition, however, that the future of scaling for DNNs is limited, with
diminishing performance returns relative to the costs of training, the finite nature of high-quality
data, and the various problems associated with ever-increasing energy consumption and cost.
This has led to an increased focus among researchers in both academia and industry on
efficient scaling techniques, sparse and modular architectures, model compression, combining
specialized smaller models, employing mixtures of experts, exploring synthetic data, and other
directions that aim to provide alternatives to brute-force scaling. Interestingly, many of these
techniques were originally developed for Al systems from previous paradigms, but have been
repurposed to improve DNN performance.

Modern Al systems are complex ecosystems integrating numerous components beyond the
core foundation DNN model, including prompt management, connecting to external memory
and knowledge sources, additional reinforcement learning-based training, fine-tuning modules,
and more. This modularity allows for greater flexibility, efficiency, and robustness than a single
DNN trying to do everything. Many of these components of the Al stack are DNNs, though
generally smaller and more specialized than the core foundation model. Yet these current
models still fall short of important goals such as interpretability, continual learning, and
alignment with complex values and preferences, and there is currently no clear indication of

"Certain commercial machines report having on the order of 1000s of physical qubits, but the number of logical
qubits available for computing purposes is often considerably smaller due to the redundancies required for quantum
error correction.
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when these approaches will plateau and no clear roadmap to the next architectural
breakthrough.

These trends point toward a new generation of heterogeneous DNN-based systems to increase
both performance and capabilities. Such systems could support improvements in reasoning,
causal understanding, complex planning, robustness, long-term memory, and other critical
areas that the current generation of large foundation models has not yet mastered. Other
existing directions of research may be promising for next-generation DNNs, including new
models of attention, relational architectures, state-space sequence models,
dynamic/adaptive/self-modifying networks, architectures for neural operator learning, networks
explicitly structured for reasoning (e.g., causal representation learning), and networks with
domain-specific information embedded directly into layers. The integration of domain
knowledge or constraints into networks may significantly improve performance, interpretability,
and reliability. For example, physics-informed neural networks (PINNs) directly integrate
knowledge of physical laws, principles, and equations; graph neural networks represent the
relational structure of the data; and causal inference neural networks aim to learn causal
relationships between variables rather than just correlations.

Seeding the Next Al Revolution

One of the most visible recent developments in Al has been the rapid emergence of intense
industrial competition among both startups and traditional tech companies to deploy Al
technology. Virtually all these companies have staked their future on exploiting the unexpected
capabilities of deep neural networks, large language models, and other foundation models. All
are building on a common base of existing research results and computing technology with
relatively little “moat” to separate their products from those of other companies. This has
resulted in fierce competition for talent, capital, customers, and ideas.

Such fierce competition can be good for consumers, as it focuses companies on rapid
development and deployment of products that satisfy customer needs. However, it further
reinforces one of the most common limitations of industrial research — a focus on short-term
product development rather than long-term, paradigm-shifting research. That is, industrial
research tends to focus on exploiting and extending what has already been shown to work
well, rather than pursuing riskier research directions with higher long-term payoff.

Such long-term, paradigm-shifting research is where academic research typically excels.
Indeed, the current paradigm of Al research resulted from decades of academic research on
neural networks, language models, computer vision, and other areas that were predominantly
supported by government funding. However, that research was not supported because the
recent extraordinary success of deep neural networks was easy to foresee. Rather, that support
was part of an intentional investment strategy to support a diversified portfolio of alternative
paradigms, explicitly acknowledging and managing the uncertainty about where revolutionary
new technological developments would emerge.

Exploring many of the potential future paradigms for Al research requires the sort of sustained
effort that only government funding typically supports. For example, successfully fostering
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multidisciplinary paradigms (e.g., neuromorphic Al, quantum Al, and embodied Al) is typically
accomplished by sustained federal funding of dedicated research institutes. Such institutes
bring together a critical mass of research talent in the disparate specialties that make up the
field and keep those researchers in close proximity for a sufficient time for collaborations to
solidify and flourish. This environment can also convince new students to enter the field and
can foster early-career researchers and early-stage commercialization efforts.

The United States is already benefiting tremendously because the current Al revolution has
largely been centered within the borders of North America. However, what is true of the current
revolution need not be true of the next revolution. Without a sustained and robust portfolio of
research efforts in both industry and academia, the next Al revolution could well be centered in
other nations, with those nations reaping the benefits and controlling the direction of future
innovation in Al.
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